You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvd3.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. *> \brief <b> ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGSVD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  22. * LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  23. * LWORK, RWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  32. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  33. * $ U( LDU, * ), V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> ZGGSVD3 computes the generalized singular value decomposition (GSVD)
  43. *> of an M-by-N complex matrix A and P-by-N complex matrix B:
  44. *>
  45. *> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
  46. *>
  47. *> where U, V and Q are unitary matrices.
  48. *> Let K+L = the effective numerical rank of the
  49. *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
  50. *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
  51. *> matrices and of the following structures, respectively:
  52. *>
  53. *> If M-K-L >= 0,
  54. *>
  55. *> K L
  56. *> D1 = K ( I 0 )
  57. *> L ( 0 C )
  58. *> M-K-L ( 0 0 )
  59. *>
  60. *> K L
  61. *> D2 = L ( 0 S )
  62. *> P-L ( 0 0 )
  63. *>
  64. *> N-K-L K L
  65. *> ( 0 R ) = K ( 0 R11 R12 )
  66. *> L ( 0 0 R22 )
  67. *> where
  68. *>
  69. *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
  70. *> S = diag( BETA(K+1), ... , BETA(K+L) ),
  71. *> C**2 + S**2 = I.
  72. *>
  73. *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
  74. *>
  75. *> If M-K-L < 0,
  76. *>
  77. *> K M-K K+L-M
  78. *> D1 = K ( I 0 0 )
  79. *> M-K ( 0 C 0 )
  80. *>
  81. *> K M-K K+L-M
  82. *> D2 = M-K ( 0 S 0 )
  83. *> K+L-M ( 0 0 I )
  84. *> P-L ( 0 0 0 )
  85. *>
  86. *> N-K-L K M-K K+L-M
  87. *> ( 0 R ) = K ( 0 R11 R12 R13 )
  88. *> M-K ( 0 0 R22 R23 )
  89. *> K+L-M ( 0 0 0 R33 )
  90. *>
  91. *> where
  92. *>
  93. *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
  94. *> S = diag( BETA(K+1), ... , BETA(M) ),
  95. *> C**2 + S**2 = I.
  96. *>
  97. *> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
  98. *> ( 0 R22 R23 )
  99. *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
  100. *>
  101. *> The routine computes C, S, R, and optionally the unitary
  102. *> transformation matrices U, V and Q.
  103. *>
  104. *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
  105. *> A and B implicitly gives the SVD of A*inv(B):
  106. *> A*inv(B) = U*(D1*inv(D2))*V**H.
  107. *> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
  108. *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
  109. *> be used to derive the solution of the eigenvalue problem:
  110. *> A**H*A x = lambda* B**H*B x.
  111. *> In some literature, the GSVD of A and B is presented in the form
  112. *> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
  113. *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
  114. *> ``diagonal''. The former GSVD form can be converted to the latter
  115. *> form by taking the nonsingular matrix X as
  116. *>
  117. *> X = Q*( I 0 )
  118. *> ( 0 inv(R) )
  119. *> \endverbatim
  120. *
  121. * Arguments:
  122. * ==========
  123. *
  124. *> \param[in] JOBU
  125. *> \verbatim
  126. *> JOBU is CHARACTER*1
  127. *> = 'U': Unitary matrix U is computed;
  128. *> = 'N': U is not computed.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] JOBV
  132. *> \verbatim
  133. *> JOBV is CHARACTER*1
  134. *> = 'V': Unitary matrix V is computed;
  135. *> = 'N': V is not computed.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] JOBQ
  139. *> \verbatim
  140. *> JOBQ is CHARACTER*1
  141. *> = 'Q': Unitary matrix Q is computed;
  142. *> = 'N': Q is not computed.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] M
  146. *> \verbatim
  147. *> M is INTEGER
  148. *> The number of rows of the matrix A. M >= 0.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] N
  152. *> \verbatim
  153. *> N is INTEGER
  154. *> The number of columns of the matrices A and B. N >= 0.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] P
  158. *> \verbatim
  159. *> P is INTEGER
  160. *> The number of rows of the matrix B. P >= 0.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] K
  164. *> \verbatim
  165. *> K is INTEGER
  166. *> \endverbatim
  167. *>
  168. *> \param[out] L
  169. *> \verbatim
  170. *> L is INTEGER
  171. *>
  172. *> On exit, K and L specify the dimension of the subblocks
  173. *> described in Purpose.
  174. *> K + L = effective numerical rank of (A**H,B**H)**H.
  175. *> \endverbatim
  176. *>
  177. *> \param[in,out] A
  178. *> \verbatim
  179. *> A is COMPLEX*16 array, dimension (LDA,N)
  180. *> On entry, the M-by-N matrix A.
  181. *> On exit, A contains the triangular matrix R, or part of R.
  182. *> See Purpose for details.
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDA
  186. *> \verbatim
  187. *> LDA is INTEGER
  188. *> The leading dimension of the array A. LDA >= max(1,M).
  189. *> \endverbatim
  190. *>
  191. *> \param[in,out] B
  192. *> \verbatim
  193. *> B is COMPLEX*16 array, dimension (LDB,N)
  194. *> On entry, the P-by-N matrix B.
  195. *> On exit, B contains part of the triangular matrix R if
  196. *> M-K-L < 0. See Purpose for details.
  197. *> \endverbatim
  198. *>
  199. *> \param[in] LDB
  200. *> \verbatim
  201. *> LDB is INTEGER
  202. *> The leading dimension of the array B. LDB >= max(1,P).
  203. *> \endverbatim
  204. *>
  205. *> \param[out] ALPHA
  206. *> \verbatim
  207. *> ALPHA is DOUBLE PRECISION array, dimension (N)
  208. *> \endverbatim
  209. *>
  210. *> \param[out] BETA
  211. *> \verbatim
  212. *> BETA is DOUBLE PRECISION array, dimension (N)
  213. *>
  214. *> On exit, ALPHA and BETA contain the generalized singular
  215. *> value pairs of A and B;
  216. *> ALPHA(1:K) = 1,
  217. *> BETA(1:K) = 0,
  218. *> and if M-K-L >= 0,
  219. *> ALPHA(K+1:K+L) = C,
  220. *> BETA(K+1:K+L) = S,
  221. *> or if M-K-L < 0,
  222. *> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  223. *> BETA(K+1:M) =S, BETA(M+1:K+L) =1
  224. *> and
  225. *> ALPHA(K+L+1:N) = 0
  226. *> BETA(K+L+1:N) = 0
  227. *> \endverbatim
  228. *>
  229. *> \param[out] U
  230. *> \verbatim
  231. *> U is COMPLEX*16 array, dimension (LDU,M)
  232. *> If JOBU = 'U', U contains the M-by-M unitary matrix U.
  233. *> If JOBU = 'N', U is not referenced.
  234. *> \endverbatim
  235. *>
  236. *> \param[in] LDU
  237. *> \verbatim
  238. *> LDU is INTEGER
  239. *> The leading dimension of the array U. LDU >= max(1,M) if
  240. *> JOBU = 'U'; LDU >= 1 otherwise.
  241. *> \endverbatim
  242. *>
  243. *> \param[out] V
  244. *> \verbatim
  245. *> V is COMPLEX*16 array, dimension (LDV,P)
  246. *> If JOBV = 'V', V contains the P-by-P unitary matrix V.
  247. *> If JOBV = 'N', V is not referenced.
  248. *> \endverbatim
  249. *>
  250. *> \param[in] LDV
  251. *> \verbatim
  252. *> LDV is INTEGER
  253. *> The leading dimension of the array V. LDV >= max(1,P) if
  254. *> JOBV = 'V'; LDV >= 1 otherwise.
  255. *> \endverbatim
  256. *>
  257. *> \param[out] Q
  258. *> \verbatim
  259. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  260. *> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
  261. *> If JOBQ = 'N', Q is not referenced.
  262. *> \endverbatim
  263. *>
  264. *> \param[in] LDQ
  265. *> \verbatim
  266. *> LDQ is INTEGER
  267. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  268. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  269. *> \endverbatim
  270. *>
  271. *> \param[out] WORK
  272. *> \verbatim
  273. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  274. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  275. *> \endverbatim
  276. *>
  277. *> \param[in] LWORK
  278. *> \verbatim
  279. *> LWORK is INTEGER
  280. *> The dimension of the array WORK. LWORK >= 1.
  281. *>
  282. *> If LWORK = -1, then a workspace query is assumed; the routine
  283. *> only calculates the optimal size of the WORK array, returns
  284. *> this value as the first entry of the WORK array, and no error
  285. *> message related to LWORK is issued by XERBLA.
  286. *> \endverbatim
  287. *>
  288. *> \param[out] RWORK
  289. *> \verbatim
  290. *> RWORK is DOUBLE PRECISION array, dimension (2*N)
  291. *> \endverbatim
  292. *>
  293. *> \param[out] IWORK
  294. *> \verbatim
  295. *> IWORK is INTEGER array, dimension (N)
  296. *> On exit, IWORK stores the sorting information. More
  297. *> precisely, the following loop will sort ALPHA
  298. *> for I = K+1, min(M,K+L)
  299. *> swap ALPHA(I) and ALPHA(IWORK(I))
  300. *> endfor
  301. *> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  302. *> \endverbatim
  303. *>
  304. *> \param[out] INFO
  305. *> \verbatim
  306. *> INFO is INTEGER
  307. *> = 0: successful exit.
  308. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  309. *> > 0: if INFO = 1, the Jacobi-type procedure failed to
  310. *> converge. For further details, see subroutine ZTGSJA.
  311. *> \endverbatim
  312. *
  313. *> \par Internal Parameters:
  314. * =========================
  315. *>
  316. *> \verbatim
  317. *> TOLA DOUBLE PRECISION
  318. *> TOLB DOUBLE PRECISION
  319. *> TOLA and TOLB are the thresholds to determine the effective
  320. *> rank of (A**H,B**H)**H. Generally, they are set to
  321. *> TOLA = MAX(M,N)*norm(A)*MACHEPS,
  322. *> TOLB = MAX(P,N)*norm(B)*MACHEPS.
  323. *> The size of TOLA and TOLB may affect the size of backward
  324. *> errors of the decomposition.
  325. *> \endverbatim
  326. *
  327. * Authors:
  328. * ========
  329. *
  330. *> \author Univ. of Tennessee
  331. *> \author Univ. of California Berkeley
  332. *> \author Univ. of Colorado Denver
  333. *> \author NAG Ltd.
  334. *
  335. *> \ingroup ggsvd3
  336. *
  337. *> \par Contributors:
  338. * ==================
  339. *>
  340. *> Ming Gu and Huan Ren, Computer Science Division, University of
  341. *> California at Berkeley, USA
  342. *>
  343. *
  344. *> \par Further Details:
  345. * =====================
  346. *>
  347. *> ZGGSVD3 replaces the deprecated subroutine ZGGSVD.
  348. *>
  349. * =====================================================================
  350. SUBROUTINE ZGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  351. $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  352. $ WORK, LWORK, RWORK, IWORK, INFO )
  353. *
  354. * -- LAPACK driver routine --
  355. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  356. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  357. *
  358. * .. Scalar Arguments ..
  359. CHARACTER JOBQ, JOBU, JOBV
  360. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
  361. $ LWORK
  362. * ..
  363. * .. Array Arguments ..
  364. INTEGER IWORK( * )
  365. DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  366. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  367. $ U( LDU, * ), V( LDV, * ), WORK( * )
  368. * ..
  369. *
  370. * =====================================================================
  371. *
  372. * .. Local Scalars ..
  373. LOGICAL WANTQ, WANTU, WANTV, LQUERY
  374. INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
  375. DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  376. * ..
  377. * .. External Functions ..
  378. LOGICAL LSAME
  379. DOUBLE PRECISION DLAMCH, ZLANGE
  380. EXTERNAL LSAME, DLAMCH, ZLANGE
  381. * ..
  382. * .. External Subroutines ..
  383. EXTERNAL DCOPY, XERBLA, ZGGSVP3, ZTGSJA
  384. * ..
  385. * .. Intrinsic Functions ..
  386. INTRINSIC MAX, MIN
  387. * ..
  388. * .. Executable Statements ..
  389. *
  390. * Decode and test the input parameters
  391. *
  392. WANTU = LSAME( JOBU, 'U' )
  393. WANTV = LSAME( JOBV, 'V' )
  394. WANTQ = LSAME( JOBQ, 'Q' )
  395. LQUERY = ( LWORK.EQ.-1 )
  396. LWKOPT = 1
  397. *
  398. * Test the input arguments
  399. *
  400. INFO = 0
  401. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  402. INFO = -1
  403. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  404. INFO = -2
  405. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  406. INFO = -3
  407. ELSE IF( M.LT.0 ) THEN
  408. INFO = -4
  409. ELSE IF( N.LT.0 ) THEN
  410. INFO = -5
  411. ELSE IF( P.LT.0 ) THEN
  412. INFO = -6
  413. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  414. INFO = -10
  415. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  416. INFO = -12
  417. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  418. INFO = -16
  419. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  420. INFO = -18
  421. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  422. INFO = -20
  423. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  424. INFO = -24
  425. END IF
  426. *
  427. * Compute workspace
  428. *
  429. IF( INFO.EQ.0 ) THEN
  430. CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  431. $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
  432. $ WORK, WORK, -1, INFO )
  433. LWKOPT = N + INT( WORK( 1 ) )
  434. LWKOPT = MAX( 2*N, LWKOPT )
  435. LWKOPT = MAX( 1, LWKOPT )
  436. WORK( 1 ) = DCMPLX( LWKOPT )
  437. END IF
  438. *
  439. IF( INFO.NE.0 ) THEN
  440. CALL XERBLA( 'ZGGSVD3', -INFO )
  441. RETURN
  442. END IF
  443. IF( LQUERY ) THEN
  444. RETURN
  445. ENDIF
  446. *
  447. * Compute the Frobenius norm of matrices A and B
  448. *
  449. ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
  450. BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
  451. *
  452. * Get machine precision and set up threshold for determining
  453. * the effective numerical rank of the matrices A and B.
  454. *
  455. ULP = DLAMCH( 'Precision' )
  456. UNFL = DLAMCH( 'Safe Minimum' )
  457. TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  458. TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  459. *
  460. CALL ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  461. $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
  462. $ WORK, WORK( N+1 ), LWORK-N, INFO )
  463. *
  464. * Compute the GSVD of two upper "triangular" matrices
  465. *
  466. CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  467. $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  468. $ WORK, NCYCLE, INFO )
  469. *
  470. * Sort the singular values and store the pivot indices in IWORK
  471. * Copy ALPHA to RWORK, then sort ALPHA in RWORK
  472. *
  473. CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
  474. IBND = MIN( L, M-K )
  475. DO 20 I = 1, IBND
  476. *
  477. * Scan for largest ALPHA(K+I)
  478. *
  479. ISUB = I
  480. SMAX = RWORK( K+I )
  481. DO 10 J = I + 1, IBND
  482. TEMP = RWORK( K+J )
  483. IF( TEMP.GT.SMAX ) THEN
  484. ISUB = J
  485. SMAX = TEMP
  486. END IF
  487. 10 CONTINUE
  488. IF( ISUB.NE.I ) THEN
  489. RWORK( K+ISUB ) = RWORK( K+I )
  490. RWORK( K+I ) = SMAX
  491. IWORK( K+I ) = K + ISUB
  492. ELSE
  493. IWORK( K+I ) = K + I
  494. END IF
  495. 20 CONTINUE
  496. *
  497. WORK( 1 ) = DCMPLX( LWKOPT )
  498. RETURN
  499. *
  500. * End of ZGGSVD3
  501. *
  502. END