You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zbbcsd.f 39 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. *> \brief \b ZBBCSD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZBBCSD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbbcsd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbbcsd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbbcsd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  22. * THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  23. * V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  24. * B22D, B22E, RWORK, LRWORK, INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
  29. * ..
  30. * .. Array Arguments ..
  31. * DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  32. * $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  33. * $ PHI( * ), THETA( * ), RWORK( * )
  34. * COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  35. * $ V2T( LDV2T, * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> ZBBCSD computes the CS decomposition of a unitary matrix in
  45. *> bidiagonal-block form,
  46. *>
  47. *>
  48. *> [ B11 | B12 0 0 ]
  49. *> [ 0 | 0 -I 0 ]
  50. *> X = [----------------]
  51. *> [ B21 | B22 0 0 ]
  52. *> [ 0 | 0 0 I ]
  53. *>
  54. *> [ C | -S 0 0 ]
  55. *> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H
  56. *> = [---------] [---------------] [---------] .
  57. *> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
  58. *> [ 0 | 0 0 I ]
  59. *>
  60. *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
  61. *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
  62. *> transposed and/or permuted. This can be done in constant time using
  63. *> the TRANS and SIGNS options. See ZUNCSD for details.)
  64. *>
  65. *> The bidiagonal matrices B11, B12, B21, and B22 are represented
  66. *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
  67. *>
  68. *> The unitary matrices U1, U2, V1T, and V2T are input/output.
  69. *> The input matrices are pre- or post-multiplied by the appropriate
  70. *> singular vector matrices.
  71. *> \endverbatim
  72. *
  73. * Arguments:
  74. * ==========
  75. *
  76. *> \param[in] JOBU1
  77. *> \verbatim
  78. *> JOBU1 is CHARACTER
  79. *> = 'Y': U1 is updated;
  80. *> otherwise: U1 is not updated.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] JOBU2
  84. *> \verbatim
  85. *> JOBU2 is CHARACTER
  86. *> = 'Y': U2 is updated;
  87. *> otherwise: U2 is not updated.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] JOBV1T
  91. *> \verbatim
  92. *> JOBV1T is CHARACTER
  93. *> = 'Y': V1T is updated;
  94. *> otherwise: V1T is not updated.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] JOBV2T
  98. *> \verbatim
  99. *> JOBV2T is CHARACTER
  100. *> = 'Y': V2T is updated;
  101. *> otherwise: V2T is not updated.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] TRANS
  105. *> \verbatim
  106. *> TRANS is CHARACTER
  107. *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
  108. *> order;
  109. *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
  110. *> major order.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] M
  114. *> \verbatim
  115. *> M is INTEGER
  116. *> The number of rows and columns in X, the unitary matrix in
  117. *> bidiagonal-block form.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] P
  121. *> \verbatim
  122. *> P is INTEGER
  123. *> The number of rows in the top-left block of X. 0 <= P <= M.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] Q
  127. *> \verbatim
  128. *> Q is INTEGER
  129. *> The number of columns in the top-left block of X.
  130. *> 0 <= Q <= MIN(P,M-P,M-Q).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] THETA
  134. *> \verbatim
  135. *> THETA is DOUBLE PRECISION array, dimension (Q)
  136. *> On entry, the angles THETA(1),...,THETA(Q) that, along with
  137. *> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138. *> form. On exit, the angles whose cosines and sines define the
  139. *> diagonal blocks in the CS decomposition.
  140. *> \endverbatim
  141. *>
  142. *> \param[in,out] PHI
  143. *> \verbatim
  144. *> PHI is DOUBLE PRECISION array, dimension (Q-1)
  145. *> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146. *> THETA(Q), define the matrix in bidiagonal-block form.
  147. *> \endverbatim
  148. *>
  149. *> \param[in,out] U1
  150. *> \verbatim
  151. *> U1 is COMPLEX*16 array, dimension (LDU1,P)
  152. *> On entry, a P-by-P matrix. On exit, U1 is postmultiplied
  153. *> by the left singular vector matrix common to [ B11 ; 0 ] and
  154. *> [ B12 0 0 ; 0 -I 0 0 ].
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDU1
  158. *> \verbatim
  159. *> LDU1 is INTEGER
  160. *> The leading dimension of the array U1, LDU1 >= MAX(1,P).
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] U2
  164. *> \verbatim
  165. *> U2 is COMPLEX*16 array, dimension (LDU2,M-P)
  166. *> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
  167. *> postmultiplied by the left singular vector matrix common to
  168. *> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDU2
  172. *> \verbatim
  173. *> LDU2 is INTEGER
  174. *> The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
  175. *> \endverbatim
  176. *>
  177. *> \param[in,out] V1T
  178. *> \verbatim
  179. *> V1T is COMPLEX*16 array, dimension (LDV1T,Q)
  180. *> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
  181. *> by the conjugate transpose of the right singular vector
  182. *> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183. *> \endverbatim
  184. *>
  185. *> \param[in] LDV1T
  186. *> \verbatim
  187. *> LDV1T is INTEGER
  188. *> The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
  189. *> \endverbatim
  190. *>
  191. *> \param[in,out] V2T
  192. *> \verbatim
  193. *> V2T is COMPLEX*16 array, dimension (LDV2T,M-Q)
  194. *> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
  195. *> premultiplied by the conjugate transpose of the right
  196. *> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197. *> [ B22 0 0 ; 0 0 I ].
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LDV2T
  201. *> \verbatim
  202. *> LDV2T is INTEGER
  203. *> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
  204. *> \endverbatim
  205. *>
  206. *> \param[out] B11D
  207. *> \verbatim
  208. *> B11D is DOUBLE PRECISION array, dimension (Q)
  209. *> When ZBBCSD converges, B11D contains the cosines of THETA(1),
  210. *> ..., THETA(Q). If ZBBCSD fails to converge, then B11D
  211. *> contains the diagonal of the partially reduced top-left
  212. *> block.
  213. *> \endverbatim
  214. *>
  215. *> \param[out] B11E
  216. *> \verbatim
  217. *> B11E is DOUBLE PRECISION array, dimension (Q-1)
  218. *> When ZBBCSD converges, B11E contains zeros. If ZBBCSD fails
  219. *> to converge, then B11E contains the superdiagonal of the
  220. *> partially reduced top-left block.
  221. *> \endverbatim
  222. *>
  223. *> \param[out] B12D
  224. *> \verbatim
  225. *> B12D is DOUBLE PRECISION array, dimension (Q)
  226. *> When ZBBCSD converges, B12D contains the negative sines of
  227. *> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  228. *> B12D contains the diagonal of the partially reduced top-right
  229. *> block.
  230. *> \endverbatim
  231. *>
  232. *> \param[out] B12E
  233. *> \verbatim
  234. *> B12E is DOUBLE PRECISION array, dimension (Q-1)
  235. *> When ZBBCSD converges, B12E contains zeros. If ZBBCSD fails
  236. *> to converge, then B12E contains the subdiagonal of the
  237. *> partially reduced top-right block.
  238. *> \endverbatim
  239. *>
  240. *> \param[out] B21D
  241. *> \verbatim
  242. *> B21D is DOUBLE PRECISION array, dimension (Q)
  243. *> When ZBBCSD converges, B21D contains the negative sines of
  244. *> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  245. *> B21D contains the diagonal of the partially reduced bottom-left
  246. *> block.
  247. *> \endverbatim
  248. *>
  249. *> \param[out] B21E
  250. *> \verbatim
  251. *> B21E is DOUBLE PRECISION array, dimension (Q-1)
  252. *> When ZBBCSD converges, B21E contains zeros. If ZBBCSD fails
  253. *> to converge, then B21E contains the subdiagonal of the
  254. *> partially reduced bottom-left block.
  255. *> \endverbatim
  256. *>
  257. *> \param[out] B22D
  258. *> \verbatim
  259. *> B22D is DOUBLE PRECISION array, dimension (Q)
  260. *> When ZBBCSD converges, B22D contains the negative sines of
  261. *> THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  262. *> B22D contains the diagonal of the partially reduced bottom-right
  263. *> block.
  264. *> \endverbatim
  265. *>
  266. *> \param[out] B22E
  267. *> \verbatim
  268. *> B22E is DOUBLE PRECISION array, dimension (Q-1)
  269. *> When ZBBCSD converges, B22E contains zeros. If ZBBCSD fails
  270. *> to converge, then B22E contains the subdiagonal of the
  271. *> partially reduced bottom-right block.
  272. *> \endverbatim
  273. *>
  274. *> \param[out] RWORK
  275. *> \verbatim
  276. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  277. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  278. *> \endverbatim
  279. *>
  280. *> \param[in] LRWORK
  281. *> \verbatim
  282. *> LRWORK is INTEGER
  283. *> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
  284. *>
  285. *> If LRWORK = -1, then a workspace query is assumed; the
  286. *> routine only calculates the optimal size of the RWORK array,
  287. *> returns this value as the first entry of the work array, and
  288. *> no error message related to LRWORK is issued by XERBLA.
  289. *> \endverbatim
  290. *>
  291. *> \param[out] INFO
  292. *> \verbatim
  293. *> INFO is INTEGER
  294. *> = 0: successful exit.
  295. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  296. *> > 0: if ZBBCSD did not converge, INFO specifies the number
  297. *> of nonzero entries in PHI, and B11D, B11E, etc.,
  298. *> contain the partially reduced matrix.
  299. *> \endverbatim
  300. *
  301. *> \par Internal Parameters:
  302. * =========================
  303. *>
  304. *> \verbatim
  305. *> TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306. *> TOLMUL controls the convergence criterion of the QR loop.
  307. *> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308. *> are within TOLMUL*EPS of either bound.
  309. *> \endverbatim
  310. *
  311. *> \par References:
  312. * ================
  313. *>
  314. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315. *> Algorithms, 50(1):33-65, 2009.
  316. *
  317. * Authors:
  318. * ========
  319. *
  320. *> \author Univ. of Tennessee
  321. *> \author Univ. of California Berkeley
  322. *> \author Univ. of Colorado Denver
  323. *> \author NAG Ltd.
  324. *
  325. *> \ingroup complex16OTHERcomputational
  326. *
  327. * =====================================================================
  328. SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  329. $ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  330. $ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  331. $ B22D, B22E, RWORK, LRWORK, INFO )
  332. *
  333. * -- LAPACK computational routine --
  334. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  335. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  336. *
  337. * .. Scalar Arguments ..
  338. CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  339. INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
  340. * ..
  341. * .. Array Arguments ..
  342. DOUBLE PRECISION B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  343. $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  344. $ PHI( * ), THETA( * ), RWORK( * )
  345. COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  346. $ V2T( LDV2T, * )
  347. * ..
  348. *
  349. * ===================================================================
  350. *
  351. * .. Parameters ..
  352. INTEGER MAXITR
  353. PARAMETER ( MAXITR = 6 )
  354. DOUBLE PRECISION HUNDRED, MEIGHTH, ONE, TEN, ZERO
  355. PARAMETER ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  356. $ ONE = 1.0D0, TEN = 10.0D0, ZERO = 0.0D0 )
  357. COMPLEX*16 NEGONECOMPLEX
  358. PARAMETER ( NEGONECOMPLEX = (-1.0D0,0.0D0) )
  359. DOUBLE PRECISION PIOVER2
  360. PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
  361. * ..
  362. * .. Local Scalars ..
  363. LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
  364. $ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  365. $ WANTV2T
  366. INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  367. $ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  368. $ LRWORKMIN, LRWORKOPT, MAXIT, MINI
  369. DOUBLE PRECISION B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  370. $ EPS, MU, NU, R, SIGMA11, SIGMA21,
  371. $ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  372. $ UNFL, X1, X2, Y1, Y2
  373. *
  374. EXTERNAL DLARTGP, DLARTGS, DLAS2, XERBLA, ZLASR, ZSCAL,
  375. $ ZSWAP
  376. * ..
  377. * .. External Functions ..
  378. DOUBLE PRECISION DLAMCH
  379. LOGICAL LSAME
  380. EXTERNAL LSAME, DLAMCH
  381. * ..
  382. * .. Intrinsic Functions ..
  383. INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  384. * ..
  385. * .. Executable Statements ..
  386. *
  387. * Test input arguments
  388. *
  389. INFO = 0
  390. LQUERY = LRWORK .EQ. -1
  391. WANTU1 = LSAME( JOBU1, 'Y' )
  392. WANTU2 = LSAME( JOBU2, 'Y' )
  393. WANTV1T = LSAME( JOBV1T, 'Y' )
  394. WANTV2T = LSAME( JOBV2T, 'Y' )
  395. COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  396. *
  397. IF( M .LT. 0 ) THEN
  398. INFO = -6
  399. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  400. INFO = -7
  401. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  402. INFO = -8
  403. ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  404. INFO = -8
  405. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  406. INFO = -12
  407. ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  408. INFO = -14
  409. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  410. INFO = -16
  411. ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  412. INFO = -18
  413. END IF
  414. *
  415. * Quick return if Q = 0
  416. *
  417. IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  418. LRWORKMIN = 1
  419. RWORK(1) = LRWORKMIN
  420. RETURN
  421. END IF
  422. *
  423. * Compute workspace
  424. *
  425. IF( INFO .EQ. 0 ) THEN
  426. IU1CS = 1
  427. IU1SN = IU1CS + Q
  428. IU2CS = IU1SN + Q
  429. IU2SN = IU2CS + Q
  430. IV1TCS = IU2SN + Q
  431. IV1TSN = IV1TCS + Q
  432. IV2TCS = IV1TSN + Q
  433. IV2TSN = IV2TCS + Q
  434. LRWORKOPT = IV2TSN + Q - 1
  435. LRWORKMIN = LRWORKOPT
  436. RWORK(1) = LRWORKOPT
  437. IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
  438. INFO = -28
  439. END IF
  440. END IF
  441. *
  442. IF( INFO .NE. 0 ) THEN
  443. CALL XERBLA( 'ZBBCSD', -INFO )
  444. RETURN
  445. ELSE IF( LQUERY ) THEN
  446. RETURN
  447. END IF
  448. *
  449. * Get machine constants
  450. *
  451. EPS = DLAMCH( 'Epsilon' )
  452. UNFL = DLAMCH( 'Safe minimum' )
  453. TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  454. TOL = TOLMUL*EPS
  455. THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  456. *
  457. * Test for negligible sines or cosines
  458. *
  459. DO I = 1, Q
  460. IF( THETA(I) .LT. THRESH ) THEN
  461. THETA(I) = ZERO
  462. ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  463. THETA(I) = PIOVER2
  464. END IF
  465. END DO
  466. DO I = 1, Q-1
  467. IF( PHI(I) .LT. THRESH ) THEN
  468. PHI(I) = ZERO
  469. ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  470. PHI(I) = PIOVER2
  471. END IF
  472. END DO
  473. *
  474. * Initial deflation
  475. *
  476. IMAX = Q
  477. DO WHILE( IMAX .GT. 1 )
  478. IF( PHI(IMAX-1) .NE. ZERO ) THEN
  479. EXIT
  480. END IF
  481. IMAX = IMAX - 1
  482. END DO
  483. IMIN = IMAX - 1
  484. IF ( IMIN .GT. 1 ) THEN
  485. DO WHILE( PHI(IMIN-1) .NE. ZERO )
  486. IMIN = IMIN - 1
  487. IF ( IMIN .LE. 1 ) EXIT
  488. END DO
  489. END IF
  490. *
  491. * Initialize iteration counter
  492. *
  493. MAXIT = MAXITR*Q*Q
  494. ITER = 0
  495. *
  496. * Begin main iteration loop
  497. *
  498. DO WHILE( IMAX .GT. 1 )
  499. *
  500. * Compute the matrix entries
  501. *
  502. B11D(IMIN) = COS( THETA(IMIN) )
  503. B21D(IMIN) = -SIN( THETA(IMIN) )
  504. DO I = IMIN, IMAX - 1
  505. B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  506. B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  507. B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  508. B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  509. B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  510. B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  511. B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  512. B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  513. END DO
  514. B12D(IMAX) = SIN( THETA(IMAX) )
  515. B22D(IMAX) = COS( THETA(IMAX) )
  516. *
  517. * Abort if not converging; otherwise, increment ITER
  518. *
  519. IF( ITER .GT. MAXIT ) THEN
  520. INFO = 0
  521. DO I = 1, Q
  522. IF( PHI(I) .NE. ZERO )
  523. $ INFO = INFO + 1
  524. END DO
  525. RETURN
  526. END IF
  527. *
  528. ITER = ITER + IMAX - IMIN
  529. *
  530. * Compute shifts
  531. *
  532. THETAMAX = THETA(IMIN)
  533. THETAMIN = THETA(IMIN)
  534. DO I = IMIN+1, IMAX
  535. IF( THETA(I) > THETAMAX )
  536. $ THETAMAX = THETA(I)
  537. IF( THETA(I) < THETAMIN )
  538. $ THETAMIN = THETA(I)
  539. END DO
  540. *
  541. IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  542. *
  543. * Zero on diagonals of B11 and B22; induce deflation with a
  544. * zero shift
  545. *
  546. MU = ZERO
  547. NU = ONE
  548. *
  549. ELSE IF( THETAMIN .LT. THRESH ) THEN
  550. *
  551. * Zero on diagonals of B12 and B22; induce deflation with a
  552. * zero shift
  553. *
  554. MU = ONE
  555. NU = ZERO
  556. *
  557. ELSE
  558. *
  559. * Compute shifts for B11 and B21 and use the lesser
  560. *
  561. CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  562. $ DUMMY )
  563. CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  564. $ DUMMY )
  565. *
  566. IF( SIGMA11 .LE. SIGMA21 ) THEN
  567. MU = SIGMA11
  568. NU = SQRT( ONE - MU**2 )
  569. IF( MU .LT. THRESH ) THEN
  570. MU = ZERO
  571. NU = ONE
  572. END IF
  573. ELSE
  574. NU = SIGMA21
  575. MU = SQRT( 1.0 - NU**2 )
  576. IF( NU .LT. THRESH ) THEN
  577. MU = ONE
  578. NU = ZERO
  579. END IF
  580. END IF
  581. END IF
  582. *
  583. * Rotate to produce bulges in B11 and B21
  584. *
  585. IF( MU .LE. NU ) THEN
  586. CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  587. $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  588. ELSE
  589. CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  590. $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  591. END IF
  592. *
  593. TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  594. $ RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
  595. B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  596. $ RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
  597. B11D(IMIN) = TEMP
  598. B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  599. B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  600. TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  601. $ RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
  602. B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  603. $ RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
  604. B21D(IMIN) = TEMP
  605. B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  606. B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  607. *
  608. * Compute THETA(IMIN)
  609. *
  610. THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  611. $ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  612. *
  613. * Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  614. *
  615. IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  616. CALL DLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
  617. $ RWORK(IU1CS+IMIN-1), R )
  618. ELSE IF( MU .LE. NU ) THEN
  619. CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  620. $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  621. ELSE
  622. CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  623. $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  624. END IF
  625. IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  626. CALL DLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
  627. $ RWORK(IU2CS+IMIN-1), R )
  628. ELSE IF( NU .LT. MU ) THEN
  629. CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  630. $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  631. ELSE
  632. CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  633. $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  634. END IF
  635. RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
  636. RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
  637. *
  638. TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
  639. $ RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  640. B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  641. $ RWORK(IU1SN+IMIN-1)*B11E(IMIN)
  642. B11E(IMIN) = TEMP
  643. IF( IMAX .GT. IMIN+1 ) THEN
  644. B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  645. B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  646. END IF
  647. TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
  648. $ RWORK(IU1SN+IMIN-1)*B12E(IMIN)
  649. B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
  650. $ RWORK(IU1SN+IMIN-1)*B12D(IMIN)
  651. B12D(IMIN) = TEMP
  652. B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  653. B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  654. TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
  655. $ RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  656. B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  657. $ RWORK(IU2SN+IMIN-1)*B21E(IMIN)
  658. B21E(IMIN) = TEMP
  659. IF( IMAX .GT. IMIN+1 ) THEN
  660. B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  661. B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  662. END IF
  663. TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
  664. $ RWORK(IU2SN+IMIN-1)*B22E(IMIN)
  665. B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
  666. $ RWORK(IU2SN+IMIN-1)*B22D(IMIN)
  667. B22D(IMIN) = TEMP
  668. B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  669. B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  670. *
  671. * Inner loop: chase bulges from B11(IMIN,IMIN+2),
  672. * B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  673. * bottom-right
  674. *
  675. DO I = IMIN+1, IMAX-1
  676. *
  677. * Compute PHI(I-1)
  678. *
  679. X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  680. X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  681. Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  682. Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  683. *
  684. PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  685. *
  686. * Determine if there are bulges to chase or if a new direct
  687. * summand has been reached
  688. *
  689. RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  690. RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  691. RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  692. RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  693. *
  694. * If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  695. * B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  696. * chasing by applying the original shift again.
  697. *
  698. IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  699. CALL DLARTGP( X2, X1, RWORK(IV1TSN+I-1),
  700. $ RWORK(IV1TCS+I-1), R )
  701. ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  702. CALL DLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
  703. $ RWORK(IV1TCS+I-1), R )
  704. ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  705. CALL DLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
  706. $ RWORK(IV1TCS+I-1), R )
  707. ELSE IF( MU .LE. NU ) THEN
  708. CALL DLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
  709. $ RWORK(IV1TSN+I-1) )
  710. ELSE
  711. CALL DLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
  712. $ RWORK(IV1TSN+I-1) )
  713. END IF
  714. RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
  715. RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
  716. IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  717. CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
  718. $ RWORK(IV2TCS+I-1-1), R )
  719. ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  720. CALL DLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
  721. $ RWORK(IV2TCS+I-1-1), R )
  722. ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  723. CALL DLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
  724. $ RWORK(IV2TCS+I-1-1), R )
  725. ELSE IF( NU .LT. MU ) THEN
  726. CALL DLARTGS( B12E(I-1), B12D(I), NU,
  727. $ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  728. ELSE
  729. CALL DLARTGS( B22E(I-1), B22D(I), MU,
  730. $ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  731. END IF
  732. *
  733. TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
  734. B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
  735. $ RWORK(IV1TSN+I-1)*B11D(I)
  736. B11D(I) = TEMP
  737. B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
  738. B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
  739. TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
  740. B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
  741. $ RWORK(IV1TSN+I-1)*B21D(I)
  742. B21D(I) = TEMP
  743. B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
  744. B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
  745. TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
  746. $ RWORK(IV2TSN+I-1-1)*B12D(I)
  747. B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
  748. $ RWORK(IV2TSN+I-1-1)*B12E(I-1)
  749. B12E(I-1) = TEMP
  750. B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
  751. B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
  752. TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
  753. $ RWORK(IV2TSN+I-1-1)*B22D(I)
  754. B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
  755. $ RWORK(IV2TSN+I-1-1)*B22E(I-1)
  756. B22E(I-1) = TEMP
  757. B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
  758. B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
  759. *
  760. * Compute THETA(I)
  761. *
  762. X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  763. X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  764. Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  765. Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  766. *
  767. THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  768. *
  769. * Determine if there are bulges to chase or if a new direct
  770. * summand has been reached
  771. *
  772. RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  773. RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  774. RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  775. RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  776. *
  777. * If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  778. * B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  779. * chasing by applying the original shift again.
  780. *
  781. IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  782. CALL DLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
  783. $ R )
  784. ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  785. CALL DLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
  786. $ RWORK(IU1CS+I-1), R )
  787. ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  788. CALL DLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
  789. $ RWORK(IU1CS+I-1), R )
  790. ELSE IF( MU .LE. NU ) THEN
  791. CALL DLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
  792. $ RWORK(IU1SN+I-1) )
  793. ELSE
  794. CALL DLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
  795. $ RWORK(IU1SN+I-1) )
  796. END IF
  797. IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  798. CALL DLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
  799. $ R )
  800. ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  801. CALL DLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
  802. $ RWORK(IU2CS+I-1), R )
  803. ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  804. CALL DLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
  805. $ RWORK(IU2CS+I-1), R )
  806. ELSE IF( NU .LT. MU ) THEN
  807. CALL DLARTGS( B21E(I), B21D(I+1), NU, RWORK(IU2CS+I-1),
  808. $ RWORK(IU2SN+I-1) )
  809. ELSE
  810. CALL DLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
  811. $ RWORK(IU2SN+I-1) )
  812. END IF
  813. RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
  814. RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
  815. *
  816. TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
  817. B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
  818. $ RWORK(IU1SN+I-1)*B11E(I)
  819. B11E(I) = TEMP
  820. IF( I .LT. IMAX - 1 ) THEN
  821. B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
  822. B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
  823. END IF
  824. TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
  825. B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
  826. $ RWORK(IU2SN+I-1)*B21E(I)
  827. B21E(I) = TEMP
  828. IF( I .LT. IMAX - 1 ) THEN
  829. B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
  830. B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
  831. END IF
  832. TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
  833. B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
  834. $ RWORK(IU1SN+I-1)*B12D(I)
  835. B12D(I) = TEMP
  836. B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
  837. B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
  838. TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
  839. B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
  840. $ RWORK(IU2SN+I-1)*B22D(I)
  841. B22D(I) = TEMP
  842. B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
  843. B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
  844. *
  845. END DO
  846. *
  847. * Compute PHI(IMAX-1)
  848. *
  849. X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  850. $ COS(THETA(IMAX-1))*B21E(IMAX-1)
  851. Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  852. $ COS(THETA(IMAX-1))*B22D(IMAX-1)
  853. Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  854. *
  855. PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  856. *
  857. * Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  858. *
  859. RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  860. RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  861. *
  862. IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  863. CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
  864. $ RWORK(IV2TCS+IMAX-1-1), R )
  865. ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  866. CALL DLARTGP( B12BULGE, B12D(IMAX-1),
  867. $ RWORK(IV2TSN+IMAX-1-1),
  868. $ RWORK(IV2TCS+IMAX-1-1), R )
  869. ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  870. CALL DLARTGP( B22BULGE, B22D(IMAX-1),
  871. $ RWORK(IV2TSN+IMAX-1-1),
  872. $ RWORK(IV2TCS+IMAX-1-1), R )
  873. ELSE IF( NU .LT. MU ) THEN
  874. CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  875. $ RWORK(IV2TCS+IMAX-1-1),
  876. $ RWORK(IV2TSN+IMAX-1-1) )
  877. ELSE
  878. CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  879. $ RWORK(IV2TCS+IMAX-1-1),
  880. $ RWORK(IV2TSN+IMAX-1-1) )
  881. END IF
  882. *
  883. TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  884. $ RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  885. B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  886. $ RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  887. B12E(IMAX-1) = TEMP
  888. TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  889. $ RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  890. B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  891. $ RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  892. B22E(IMAX-1) = TEMP
  893. *
  894. * Update singular vectors
  895. *
  896. IF( WANTU1 ) THEN
  897. IF( COLMAJOR ) THEN
  898. CALL ZLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  899. $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  900. $ U1(1,IMIN), LDU1 )
  901. ELSE
  902. CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  903. $ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  904. $ U1(IMIN,1), LDU1 )
  905. END IF
  906. END IF
  907. IF( WANTU2 ) THEN
  908. IF( COLMAJOR ) THEN
  909. CALL ZLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  910. $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  911. $ U2(1,IMIN), LDU2 )
  912. ELSE
  913. CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  914. $ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  915. $ U2(IMIN,1), LDU2 )
  916. END IF
  917. END IF
  918. IF( WANTV1T ) THEN
  919. IF( COLMAJOR ) THEN
  920. CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  921. $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  922. $ V1T(IMIN,1), LDV1T )
  923. ELSE
  924. CALL ZLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  925. $ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  926. $ V1T(1,IMIN), LDV1T )
  927. END IF
  928. END IF
  929. IF( WANTV2T ) THEN
  930. IF( COLMAJOR ) THEN
  931. CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  932. $ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  933. $ V2T(IMIN,1), LDV2T )
  934. ELSE
  935. CALL ZLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  936. $ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  937. $ V2T(1,IMIN), LDV2T )
  938. END IF
  939. END IF
  940. *
  941. * Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  942. *
  943. IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  944. B11D(IMAX) = -B11D(IMAX)
  945. B21D(IMAX) = -B21D(IMAX)
  946. IF( WANTV1T ) THEN
  947. IF( COLMAJOR ) THEN
  948. CALL ZSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
  949. ELSE
  950. CALL ZSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
  951. END IF
  952. END IF
  953. END IF
  954. *
  955. * Compute THETA(IMAX)
  956. *
  957. X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  958. $ SIN(PHI(IMAX-1))*B12E(IMAX-1)
  959. Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  960. $ SIN(PHI(IMAX-1))*B22E(IMAX-1)
  961. *
  962. THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  963. *
  964. * Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  965. * and B22(IMAX,IMAX-1)
  966. *
  967. IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  968. B12D(IMAX) = -B12D(IMAX)
  969. IF( WANTU1 ) THEN
  970. IF( COLMAJOR ) THEN
  971. CALL ZSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
  972. ELSE
  973. CALL ZSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
  974. END IF
  975. END IF
  976. END IF
  977. IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  978. B22D(IMAX) = -B22D(IMAX)
  979. IF( WANTU2 ) THEN
  980. IF( COLMAJOR ) THEN
  981. CALL ZSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
  982. ELSE
  983. CALL ZSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
  984. END IF
  985. END IF
  986. END IF
  987. *
  988. * Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  989. *
  990. IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  991. IF( WANTV2T ) THEN
  992. IF( COLMAJOR ) THEN
  993. CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
  994. ELSE
  995. CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
  996. END IF
  997. END IF
  998. END IF
  999. *
  1000. * Test for negligible sines or cosines
  1001. *
  1002. DO I = IMIN, IMAX
  1003. IF( THETA(I) .LT. THRESH ) THEN
  1004. THETA(I) = ZERO
  1005. ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  1006. THETA(I) = PIOVER2
  1007. END IF
  1008. END DO
  1009. DO I = IMIN, IMAX-1
  1010. IF( PHI(I) .LT. THRESH ) THEN
  1011. PHI(I) = ZERO
  1012. ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  1013. PHI(I) = PIOVER2
  1014. END IF
  1015. END DO
  1016. *
  1017. * Deflate
  1018. *
  1019. IF (IMAX .GT. 1) THEN
  1020. DO WHILE( PHI(IMAX-1) .EQ. ZERO )
  1021. IMAX = IMAX - 1
  1022. IF (IMAX .LE. 1) EXIT
  1023. END DO
  1024. END IF
  1025. IF( IMIN .GT. IMAX - 1 )
  1026. $ IMIN = IMAX - 1
  1027. IF (IMIN .GT. 1) THEN
  1028. DO WHILE (PHI(IMIN-1) .NE. ZERO)
  1029. IMIN = IMIN - 1
  1030. IF (IMIN .LE. 1) EXIT
  1031. END DO
  1032. END IF
  1033. *
  1034. * Repeat main iteration loop
  1035. *
  1036. END DO
  1037. *
  1038. * Postprocessing: order THETA from least to greatest
  1039. *
  1040. DO I = 1, Q
  1041. *
  1042. MINI = I
  1043. THETAMIN = THETA(I)
  1044. DO J = I+1, Q
  1045. IF( THETA(J) .LT. THETAMIN ) THEN
  1046. MINI = J
  1047. THETAMIN = THETA(J)
  1048. END IF
  1049. END DO
  1050. *
  1051. IF( MINI .NE. I ) THEN
  1052. THETA(MINI) = THETA(I)
  1053. THETA(I) = THETAMIN
  1054. IF( COLMAJOR ) THEN
  1055. IF( WANTU1 )
  1056. $ CALL ZSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
  1057. IF( WANTU2 )
  1058. $ CALL ZSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
  1059. IF( WANTV1T )
  1060. $ CALL ZSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
  1061. IF( WANTV2T )
  1062. $ CALL ZSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
  1063. $ LDV2T )
  1064. ELSE
  1065. IF( WANTU1 )
  1066. $ CALL ZSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
  1067. IF( WANTU2 )
  1068. $ CALL ZSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
  1069. IF( WANTV1T )
  1070. $ CALL ZSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
  1071. IF( WANTV2T )
  1072. $ CALL ZSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
  1073. END IF
  1074. END IF
  1075. *
  1076. END DO
  1077. *
  1078. RETURN
  1079. *
  1080. * End of ZBBCSD
  1081. *
  1082. END