You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorgql.f 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. *> \brief \b SORGQL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORGQL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgql.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgql.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgql.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, LWORK, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * REAL A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> SORGQL generates an M-by-N real matrix Q with orthonormal columns,
  37. *> which is defined as the last N columns of a product of K elementary
  38. *> reflectors of order M
  39. *>
  40. *> Q = H(k) . . . H(2) H(1)
  41. *>
  42. *> as returned by SGEQLF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. M >= N >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. N >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is REAL array, dimension (LDA,N)
  70. *> On entry, the (n-k+i)-th column must contain the vector which
  71. *> defines the elementary reflector H(i), for i = 1,2,...,k, as
  72. *> returned by SGEQLF in the last k columns of its array
  73. *> argument A.
  74. *> On exit, the M-by-N matrix Q.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The first dimension of the array A. LDA >= max(1,M).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] TAU
  84. *> \verbatim
  85. *> TAU is REAL array, dimension (K)
  86. *> TAU(i) must contain the scalar factor of the elementary
  87. *> reflector H(i), as returned by SGEQLF.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is REAL array, dimension (MAX(1,LWORK))
  93. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LWORK
  97. *> \verbatim
  98. *> LWORK is INTEGER
  99. *> The dimension of the array WORK. LWORK >= max(1,N).
  100. *> For optimum performance LWORK >= N*NB, where NB is the
  101. *> optimal blocksize.
  102. *>
  103. *> If LWORK = -1, then a workspace query is assumed; the routine
  104. *> only calculates the optimal size of the WORK array, returns
  105. *> this value as the first entry of the WORK array, and no error
  106. *> message related to LWORK is issued by XERBLA.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit
  113. *> < 0: if INFO = -i, the i-th argument has an illegal value
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \ingroup ungql
  125. *
  126. * =====================================================================
  127. SUBROUTINE SORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  128. *
  129. * -- LAPACK computational routine --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. *
  133. * .. Scalar Arguments ..
  134. INTEGER INFO, K, LDA, LWORK, M, N
  135. * ..
  136. * .. Array Arguments ..
  137. REAL A( LDA, * ), TAU( * ), WORK( * )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. REAL ZERO
  144. PARAMETER ( ZERO = 0.0E+0 )
  145. * ..
  146. * .. Local Scalars ..
  147. LOGICAL LQUERY
  148. INTEGER I, IB, IINFO, IWS, J, KK, L, LDWORK, LWKOPT,
  149. $ NB, NBMIN, NX
  150. * ..
  151. * .. External Subroutines ..
  152. EXTERNAL SLARFB, SLARFT, SORG2L, XERBLA
  153. * ..
  154. * .. Intrinsic Functions ..
  155. INTRINSIC MAX, MIN
  156. * ..
  157. * .. External Functions ..
  158. INTEGER ILAENV
  159. REAL SROUNDUP_LWORK
  160. EXTERNAL ILAENV, SROUNDUP_LWORK
  161. * ..
  162. * .. Executable Statements ..
  163. *
  164. * Test the input arguments
  165. *
  166. INFO = 0
  167. LQUERY = ( LWORK.EQ.-1 )
  168. IF( M.LT.0 ) THEN
  169. INFO = -1
  170. ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
  171. INFO = -2
  172. ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
  173. INFO = -3
  174. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  175. INFO = -5
  176. END IF
  177. *
  178. IF( INFO.EQ.0 ) THEN
  179. IF( N.EQ.0 ) THEN
  180. LWKOPT = 1
  181. ELSE
  182. NB = ILAENV( 1, 'SORGQL', ' ', M, N, K, -1 )
  183. LWKOPT = N*NB
  184. END IF
  185. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  186. *
  187. IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  188. INFO = -8
  189. END IF
  190. END IF
  191. *
  192. IF( INFO.NE.0 ) THEN
  193. CALL XERBLA( 'SORGQL', -INFO )
  194. RETURN
  195. ELSE IF( LQUERY ) THEN
  196. RETURN
  197. END IF
  198. *
  199. * Quick return if possible
  200. *
  201. IF( N.LE.0 ) THEN
  202. RETURN
  203. END IF
  204. *
  205. NBMIN = 2
  206. NX = 0
  207. IWS = N
  208. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  209. *
  210. * Determine when to cross over from blocked to unblocked code.
  211. *
  212. NX = MAX( 0, ILAENV( 3, 'SORGQL', ' ', M, N, K, -1 ) )
  213. IF( NX.LT.K ) THEN
  214. *
  215. * Determine if workspace is large enough for blocked code.
  216. *
  217. LDWORK = N
  218. IWS = LDWORK*NB
  219. IF( LWORK.LT.IWS ) THEN
  220. *
  221. * Not enough workspace to use optimal NB: reduce NB and
  222. * determine the minimum value of NB.
  223. *
  224. NB = LWORK / LDWORK
  225. NBMIN = MAX( 2, ILAENV( 2, 'SORGQL', ' ', M, N, K, -1 ) )
  226. END IF
  227. END IF
  228. END IF
  229. *
  230. IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  231. *
  232. * Use blocked code after the first block.
  233. * The last kk columns are handled by the block method.
  234. *
  235. KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
  236. *
  237. * Set A(m-kk+1:m,1:n-kk) to zero.
  238. *
  239. DO 20 J = 1, N - KK
  240. DO 10 I = M - KK + 1, M
  241. A( I, J ) = ZERO
  242. 10 CONTINUE
  243. 20 CONTINUE
  244. ELSE
  245. KK = 0
  246. END IF
  247. *
  248. * Use unblocked code for the first or only block.
  249. *
  250. CALL SORG2L( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
  251. *
  252. IF( KK.GT.0 ) THEN
  253. *
  254. * Use blocked code
  255. *
  256. DO 50 I = K - KK + 1, K, NB
  257. IB = MIN( NB, K-I+1 )
  258. IF( N-K+I.GT.1 ) THEN
  259. *
  260. * Form the triangular factor of the block reflector
  261. * H = H(i+ib-1) . . . H(i+1) H(i)
  262. *
  263. CALL SLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
  264. $ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
  265. *
  266. * Apply H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
  267. *
  268. CALL SLARFB( 'Left', 'No transpose', 'Backward',
  269. $ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
  270. $ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
  271. $ WORK( IB+1 ), LDWORK )
  272. END IF
  273. *
  274. * Apply H to rows 1:m-k+i+ib-1 of current block
  275. *
  276. CALL SORG2L( M-K+I+IB-1, IB, IB, A( 1, N-K+I ), LDA,
  277. $ TAU( I ), WORK, IINFO )
  278. *
  279. * Set rows m-k+i+ib:m of current block to zero
  280. *
  281. DO 40 J = N - K + I, N - K + I + IB - 1
  282. DO 30 L = M - K + I + IB, M
  283. A( L, J ) = ZERO
  284. 30 CONTINUE
  285. 40 CONTINUE
  286. 50 CONTINUE
  287. END IF
  288. *
  289. WORK( 1 ) = SROUNDUP_LWORK(IWS)
  290. RETURN
  291. *
  292. * End of SORGQL
  293. *
  294. END