You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasy2.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. *> \brief \b SLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASY2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasy2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasy2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasy2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
  22. * LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * LOGICAL LTRANL, LTRANR
  26. * INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
  27. * REAL SCALE, XNORM
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
  41. *>
  42. *> op(TL)*X + ISGN*X*op(TR) = SCALE*B,
  43. *>
  44. *> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
  45. *> -1. op(T) = T or T**T, where T**T denotes the transpose of T.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] LTRANL
  52. *> \verbatim
  53. *> LTRANL is LOGICAL
  54. *> On entry, LTRANL specifies the op(TL):
  55. *> = .FALSE., op(TL) = TL,
  56. *> = .TRUE., op(TL) = TL**T.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] LTRANR
  60. *> \verbatim
  61. *> LTRANR is LOGICAL
  62. *> On entry, LTRANR specifies the op(TR):
  63. *> = .FALSE., op(TR) = TR,
  64. *> = .TRUE., op(TR) = TR**T.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] ISGN
  68. *> \verbatim
  69. *> ISGN is INTEGER
  70. *> On entry, ISGN specifies the sign of the equation
  71. *> as described before. ISGN may only be 1 or -1.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N1
  75. *> \verbatim
  76. *> N1 is INTEGER
  77. *> On entry, N1 specifies the order of matrix TL.
  78. *> N1 may only be 0, 1 or 2.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N2
  82. *> \verbatim
  83. *> N2 is INTEGER
  84. *> On entry, N2 specifies the order of matrix TR.
  85. *> N2 may only be 0, 1 or 2.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] TL
  89. *> \verbatim
  90. *> TL is REAL array, dimension (LDTL,2)
  91. *> On entry, TL contains an N1 by N1 matrix.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDTL
  95. *> \verbatim
  96. *> LDTL is INTEGER
  97. *> The leading dimension of the matrix TL. LDTL >= max(1,N1).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] TR
  101. *> \verbatim
  102. *> TR is REAL array, dimension (LDTR,2)
  103. *> On entry, TR contains an N2 by N2 matrix.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDTR
  107. *> \verbatim
  108. *> LDTR is INTEGER
  109. *> The leading dimension of the matrix TR. LDTR >= max(1,N2).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] B
  113. *> \verbatim
  114. *> B is REAL array, dimension (LDB,2)
  115. *> On entry, the N1 by N2 matrix B contains the right-hand
  116. *> side of the equation.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDB
  120. *> \verbatim
  121. *> LDB is INTEGER
  122. *> The leading dimension of the matrix B. LDB >= max(1,N1).
  123. *> \endverbatim
  124. *>
  125. *> \param[out] SCALE
  126. *> \verbatim
  127. *> SCALE is REAL
  128. *> On exit, SCALE contains the scale factor. SCALE is chosen
  129. *> less than or equal to 1 to prevent the solution overflowing.
  130. *> \endverbatim
  131. *>
  132. *> \param[out] X
  133. *> \verbatim
  134. *> X is REAL array, dimension (LDX,2)
  135. *> On exit, X contains the N1 by N2 solution.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] LDX
  139. *> \verbatim
  140. *> LDX is INTEGER
  141. *> The leading dimension of the matrix X. LDX >= max(1,N1).
  142. *> \endverbatim
  143. *>
  144. *> \param[out] XNORM
  145. *> \verbatim
  146. *> XNORM is REAL
  147. *> On exit, XNORM is the infinity-norm of the solution.
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> On exit, INFO is set to
  154. *> 0: successful exit.
  155. *> 1: TL and TR have too close eigenvalues, so TL or
  156. *> TR is perturbed to get a nonsingular equation.
  157. *> NOTE: In the interests of speed, this routine does not
  158. *> check the inputs for errors.
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \ingroup realSYauxiliary
  170. *
  171. * =====================================================================
  172. SUBROUTINE SLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
  173. $ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
  174. *
  175. * -- LAPACK auxiliary routine --
  176. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  177. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178. *
  179. * .. Scalar Arguments ..
  180. LOGICAL LTRANL, LTRANR
  181. INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
  182. REAL SCALE, XNORM
  183. * ..
  184. * .. Array Arguments ..
  185. REAL B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
  186. $ X( LDX, * )
  187. * ..
  188. *
  189. * =====================================================================
  190. *
  191. * .. Parameters ..
  192. REAL ZERO, ONE
  193. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  194. REAL TWO, HALF, EIGHT
  195. PARAMETER ( TWO = 2.0E+0, HALF = 0.5E+0, EIGHT = 8.0E+0 )
  196. * ..
  197. * .. Local Scalars ..
  198. LOGICAL BSWAP, XSWAP
  199. INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
  200. REAL BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
  201. $ TEMP, U11, U12, U22, XMAX
  202. * ..
  203. * .. Local Arrays ..
  204. LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
  205. INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
  206. $ LOCU22( 4 )
  207. REAL BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
  208. * ..
  209. * .. External Functions ..
  210. INTEGER ISAMAX
  211. REAL SLAMCH
  212. EXTERNAL ISAMAX, SLAMCH
  213. * ..
  214. * .. External Subroutines ..
  215. EXTERNAL SCOPY, SSWAP
  216. * ..
  217. * .. Intrinsic Functions ..
  218. INTRINSIC ABS, MAX
  219. * ..
  220. * .. Data statements ..
  221. DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
  222. $ LOCU22 / 4, 3, 2, 1 /
  223. DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
  224. DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
  225. * ..
  226. * .. Executable Statements ..
  227. *
  228. * Do not check the input parameters for errors
  229. *
  230. INFO = 0
  231. *
  232. * Quick return if possible
  233. *
  234. IF( N1.EQ.0 .OR. N2.EQ.0 )
  235. $ RETURN
  236. *
  237. * Set constants to control overflow
  238. *
  239. EPS = SLAMCH( 'P' )
  240. SMLNUM = SLAMCH( 'S' ) / EPS
  241. SGN = ISGN
  242. *
  243. K = N1 + N1 + N2 - 2
  244. GO TO ( 10, 20, 30, 50 )K
  245. *
  246. * 1 by 1: TL11*X + SGN*X*TR11 = B11
  247. *
  248. 10 CONTINUE
  249. TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
  250. BET = ABS( TAU1 )
  251. IF( BET.LE.SMLNUM ) THEN
  252. TAU1 = SMLNUM
  253. BET = SMLNUM
  254. INFO = 1
  255. END IF
  256. *
  257. SCALE = ONE
  258. GAM = ABS( B( 1, 1 ) )
  259. IF( SMLNUM*GAM.GT.BET )
  260. $ SCALE = ONE / GAM
  261. *
  262. X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
  263. XNORM = ABS( X( 1, 1 ) )
  264. RETURN
  265. *
  266. * 1 by 2:
  267. * TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12]
  268. * [TR21 TR22]
  269. *
  270. 20 CONTINUE
  271. *
  272. SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
  273. $ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
  274. $ SMLNUM )
  275. TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  276. TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  277. IF( LTRANR ) THEN
  278. TMP( 2 ) = SGN*TR( 2, 1 )
  279. TMP( 3 ) = SGN*TR( 1, 2 )
  280. ELSE
  281. TMP( 2 ) = SGN*TR( 1, 2 )
  282. TMP( 3 ) = SGN*TR( 2, 1 )
  283. END IF
  284. BTMP( 1 ) = B( 1, 1 )
  285. BTMP( 2 ) = B( 1, 2 )
  286. GO TO 40
  287. *
  288. * 2 by 1:
  289. * op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11]
  290. * [TL21 TL22] [X21] [X21] [B21]
  291. *
  292. 30 CONTINUE
  293. SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
  294. $ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
  295. $ SMLNUM )
  296. TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  297. TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  298. IF( LTRANL ) THEN
  299. TMP( 2 ) = TL( 1, 2 )
  300. TMP( 3 ) = TL( 2, 1 )
  301. ELSE
  302. TMP( 2 ) = TL( 2, 1 )
  303. TMP( 3 ) = TL( 1, 2 )
  304. END IF
  305. BTMP( 1 ) = B( 1, 1 )
  306. BTMP( 2 ) = B( 2, 1 )
  307. 40 CONTINUE
  308. *
  309. * Solve 2 by 2 system using complete pivoting.
  310. * Set pivots less than SMIN to SMIN.
  311. *
  312. IPIV = ISAMAX( 4, TMP, 1 )
  313. U11 = TMP( IPIV )
  314. IF( ABS( U11 ).LE.SMIN ) THEN
  315. INFO = 1
  316. U11 = SMIN
  317. END IF
  318. U12 = TMP( LOCU12( IPIV ) )
  319. L21 = TMP( LOCL21( IPIV ) ) / U11
  320. U22 = TMP( LOCU22( IPIV ) ) - U12*L21
  321. XSWAP = XSWPIV( IPIV )
  322. BSWAP = BSWPIV( IPIV )
  323. IF( ABS( U22 ).LE.SMIN ) THEN
  324. INFO = 1
  325. U22 = SMIN
  326. END IF
  327. IF( BSWAP ) THEN
  328. TEMP = BTMP( 2 )
  329. BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
  330. BTMP( 1 ) = TEMP
  331. ELSE
  332. BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
  333. END IF
  334. SCALE = ONE
  335. IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
  336. $ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
  337. SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
  338. BTMP( 1 ) = BTMP( 1 )*SCALE
  339. BTMP( 2 ) = BTMP( 2 )*SCALE
  340. END IF
  341. X2( 2 ) = BTMP( 2 ) / U22
  342. X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
  343. IF( XSWAP ) THEN
  344. TEMP = X2( 2 )
  345. X2( 2 ) = X2( 1 )
  346. X2( 1 ) = TEMP
  347. END IF
  348. X( 1, 1 ) = X2( 1 )
  349. IF( N1.EQ.1 ) THEN
  350. X( 1, 2 ) = X2( 2 )
  351. XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
  352. ELSE
  353. X( 2, 1 ) = X2( 2 )
  354. XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
  355. END IF
  356. RETURN
  357. *
  358. * 2 by 2:
  359. * op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
  360. * [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
  361. *
  362. * Solve equivalent 4 by 4 system using complete pivoting.
  363. * Set pivots less than SMIN to SMIN.
  364. *
  365. 50 CONTINUE
  366. SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
  367. $ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
  368. SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
  369. $ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
  370. SMIN = MAX( EPS*SMIN, SMLNUM )
  371. BTMP( 1 ) = ZERO
  372. CALL SCOPY( 16, BTMP, 0, T16, 1 )
  373. T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  374. T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  375. T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  376. T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
  377. IF( LTRANL ) THEN
  378. T16( 1, 2 ) = TL( 2, 1 )
  379. T16( 2, 1 ) = TL( 1, 2 )
  380. T16( 3, 4 ) = TL( 2, 1 )
  381. T16( 4, 3 ) = TL( 1, 2 )
  382. ELSE
  383. T16( 1, 2 ) = TL( 1, 2 )
  384. T16( 2, 1 ) = TL( 2, 1 )
  385. T16( 3, 4 ) = TL( 1, 2 )
  386. T16( 4, 3 ) = TL( 2, 1 )
  387. END IF
  388. IF( LTRANR ) THEN
  389. T16( 1, 3 ) = SGN*TR( 1, 2 )
  390. T16( 2, 4 ) = SGN*TR( 1, 2 )
  391. T16( 3, 1 ) = SGN*TR( 2, 1 )
  392. T16( 4, 2 ) = SGN*TR( 2, 1 )
  393. ELSE
  394. T16( 1, 3 ) = SGN*TR( 2, 1 )
  395. T16( 2, 4 ) = SGN*TR( 2, 1 )
  396. T16( 3, 1 ) = SGN*TR( 1, 2 )
  397. T16( 4, 2 ) = SGN*TR( 1, 2 )
  398. END IF
  399. BTMP( 1 ) = B( 1, 1 )
  400. BTMP( 2 ) = B( 2, 1 )
  401. BTMP( 3 ) = B( 1, 2 )
  402. BTMP( 4 ) = B( 2, 2 )
  403. *
  404. * Perform elimination
  405. *
  406. DO 100 I = 1, 3
  407. XMAX = ZERO
  408. DO 70 IP = I, 4
  409. DO 60 JP = I, 4
  410. IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
  411. XMAX = ABS( T16( IP, JP ) )
  412. IPSV = IP
  413. JPSV = JP
  414. END IF
  415. 60 CONTINUE
  416. 70 CONTINUE
  417. IF( IPSV.NE.I ) THEN
  418. CALL SSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
  419. TEMP = BTMP( I )
  420. BTMP( I ) = BTMP( IPSV )
  421. BTMP( IPSV ) = TEMP
  422. END IF
  423. IF( JPSV.NE.I )
  424. $ CALL SSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
  425. JPIV( I ) = JPSV
  426. IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
  427. INFO = 1
  428. T16( I, I ) = SMIN
  429. END IF
  430. DO 90 J = I + 1, 4
  431. T16( J, I ) = T16( J, I ) / T16( I, I )
  432. BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
  433. DO 80 K = I + 1, 4
  434. T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
  435. 80 CONTINUE
  436. 90 CONTINUE
  437. 100 CONTINUE
  438. IF( ABS( T16( 4, 4 ) ).LT.SMIN ) THEN
  439. INFO = 1
  440. T16( 4, 4 ) = SMIN
  441. END IF
  442. SCALE = ONE
  443. IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
  444. $ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
  445. $ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
  446. $ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
  447. SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
  448. $ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
  449. BTMP( 1 ) = BTMP( 1 )*SCALE
  450. BTMP( 2 ) = BTMP( 2 )*SCALE
  451. BTMP( 3 ) = BTMP( 3 )*SCALE
  452. BTMP( 4 ) = BTMP( 4 )*SCALE
  453. END IF
  454. DO 120 I = 1, 4
  455. K = 5 - I
  456. TEMP = ONE / T16( K, K )
  457. TMP( K ) = BTMP( K )*TEMP
  458. DO 110 J = K + 1, 4
  459. TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
  460. 110 CONTINUE
  461. 120 CONTINUE
  462. DO 130 I = 1, 3
  463. IF( JPIV( 4-I ).NE.4-I ) THEN
  464. TEMP = TMP( 4-I )
  465. TMP( 4-I ) = TMP( JPIV( 4-I ) )
  466. TMP( JPIV( 4-I ) ) = TEMP
  467. END IF
  468. 130 CONTINUE
  469. X( 1, 1 ) = TMP( 1 )
  470. X( 2, 1 ) = TMP( 2 )
  471. X( 1, 2 ) = TMP( 3 )
  472. X( 2, 2 ) = TMP( 4 )
  473. XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
  474. $ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
  475. RETURN
  476. *
  477. * End of SLASY2
  478. *
  479. END