You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrttf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. *> \brief \b DTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTRTTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrttf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrttf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrttf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTRTTF copies a triangular matrix A from standard full format (TR)
  38. *> to rectangular full packed format (TF) .
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF in Normal form is wanted;
  48. *> = 'T': ARF in Transpose form is wanted.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is DOUBLE PRECISION array, dimension (LDA,N).
  67. *> On entry, the triangular matrix A. If UPLO = 'U', the
  68. *> leading N-by-N upper triangular part of the array A contains
  69. *> the upper triangular matrix, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of the array A contains
  72. *> the lower triangular matrix, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the matrix A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] ARF
  83. *> \verbatim
  84. *> ARF is DOUBLE PRECISION array, dimension (NT).
  85. *> NT=N*(N+1)/2. On exit, the triangular matrix A in RFP format.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> \endverbatim
  94. *
  95. * Authors:
  96. * ========
  97. *
  98. *> \author Univ. of Tennessee
  99. *> \author Univ. of California Berkeley
  100. *> \author Univ. of Colorado Denver
  101. *> \author NAG Ltd.
  102. *
  103. *> \ingroup doubleOTHERcomputational
  104. *
  105. *> \par Further Details:
  106. * =====================
  107. *>
  108. *> \verbatim
  109. *>
  110. *> We first consider Rectangular Full Packed (RFP) Format when N is
  111. *> even. We give an example where N = 6.
  112. *>
  113. *> AP is Upper AP is Lower
  114. *>
  115. *> 00 01 02 03 04 05 00
  116. *> 11 12 13 14 15 10 11
  117. *> 22 23 24 25 20 21 22
  118. *> 33 34 35 30 31 32 33
  119. *> 44 45 40 41 42 43 44
  120. *> 55 50 51 52 53 54 55
  121. *>
  122. *>
  123. *> Let TRANSR = 'N'. RFP holds AP as follows:
  124. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  125. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  126. *> the transpose of the first three columns of AP upper.
  127. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  128. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  129. *> the transpose of the last three columns of AP lower.
  130. *> This covers the case N even and TRANSR = 'N'.
  131. *>
  132. *> RFP A RFP A
  133. *>
  134. *> 03 04 05 33 43 53
  135. *> 13 14 15 00 44 54
  136. *> 23 24 25 10 11 55
  137. *> 33 34 35 20 21 22
  138. *> 00 44 45 30 31 32
  139. *> 01 11 55 40 41 42
  140. *> 02 12 22 50 51 52
  141. *>
  142. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  143. *> transpose of RFP A above. One therefore gets:
  144. *>
  145. *>
  146. *> RFP A RFP A
  147. *>
  148. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  149. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  150. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  151. *>
  152. *>
  153. *> We then consider Rectangular Full Packed (RFP) Format when N is
  154. *> odd. We give an example where N = 5.
  155. *>
  156. *> AP is Upper AP is Lower
  157. *>
  158. *> 00 01 02 03 04 00
  159. *> 11 12 13 14 10 11
  160. *> 22 23 24 20 21 22
  161. *> 33 34 30 31 32 33
  162. *> 44 40 41 42 43 44
  163. *>
  164. *>
  165. *> Let TRANSR = 'N'. RFP holds AP as follows:
  166. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  167. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  168. *> the transpose of the first two columns of AP upper.
  169. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  170. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  171. *> the transpose of the last two columns of AP lower.
  172. *> This covers the case N odd and TRANSR = 'N'.
  173. *>
  174. *> RFP A RFP A
  175. *>
  176. *> 02 03 04 00 33 43
  177. *> 12 13 14 10 11 44
  178. *> 22 23 24 20 21 22
  179. *> 00 33 34 30 31 32
  180. *> 01 11 44 40 41 42
  181. *>
  182. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  183. *> transpose of RFP A above. One therefore gets:
  184. *>
  185. *> RFP A RFP A
  186. *>
  187. *> 02 12 22 00 01 00 10 20 30 40 50
  188. *> 03 13 23 33 11 33 11 21 31 41 51
  189. *> 04 14 24 34 44 43 44 22 32 42 52
  190. *> \endverbatim
  191. *
  192. * =====================================================================
  193. SUBROUTINE DTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  194. *
  195. * -- LAPACK computational routine --
  196. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  197. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198. *
  199. * .. Scalar Arguments ..
  200. CHARACTER TRANSR, UPLO
  201. INTEGER INFO, N, LDA
  202. * ..
  203. * .. Array Arguments ..
  204. DOUBLE PRECISION A( 0: LDA-1, 0: * ), ARF( 0: * )
  205. * ..
  206. *
  207. * =====================================================================
  208. *
  209. * ..
  210. * .. Local Scalars ..
  211. LOGICAL LOWER, NISODD, NORMALTRANSR
  212. INTEGER I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
  213. * ..
  214. * .. External Functions ..
  215. LOGICAL LSAME
  216. EXTERNAL LSAME
  217. * ..
  218. * .. External Subroutines ..
  219. EXTERNAL XERBLA
  220. * ..
  221. * .. Intrinsic Functions ..
  222. INTRINSIC MAX, MOD
  223. * ..
  224. * .. Executable Statements ..
  225. *
  226. * Test the input parameters.
  227. *
  228. INFO = 0
  229. NORMALTRANSR = LSAME( TRANSR, 'N' )
  230. LOWER = LSAME( UPLO, 'L' )
  231. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  232. INFO = -1
  233. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  234. INFO = -2
  235. ELSE IF( N.LT.0 ) THEN
  236. INFO = -3
  237. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  238. INFO = -5
  239. END IF
  240. IF( INFO.NE.0 ) THEN
  241. CALL XERBLA( 'DTRTTF', -INFO )
  242. RETURN
  243. END IF
  244. *
  245. * Quick return if possible
  246. *
  247. IF( N.LE.1 ) THEN
  248. IF( N.EQ.1 ) THEN
  249. ARF( 0 ) = A( 0, 0 )
  250. END IF
  251. RETURN
  252. END IF
  253. *
  254. * Size of array ARF(0:nt-1)
  255. *
  256. NT = N*( N+1 ) / 2
  257. *
  258. * Set N1 and N2 depending on LOWER: for N even N1=N2=K
  259. *
  260. IF( LOWER ) THEN
  261. N2 = N / 2
  262. N1 = N - N2
  263. ELSE
  264. N1 = N / 2
  265. N2 = N - N1
  266. END IF
  267. *
  268. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  269. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  270. * N--by--(N+1)/2.
  271. *
  272. IF( MOD( N, 2 ).EQ.0 ) THEN
  273. K = N / 2
  274. NISODD = .FALSE.
  275. IF( .NOT.LOWER )
  276. $ NP1X2 = N + N + 2
  277. ELSE
  278. NISODD = .TRUE.
  279. IF( .NOT.LOWER )
  280. $ NX2 = N + N
  281. END IF
  282. *
  283. IF( NISODD ) THEN
  284. *
  285. * N is odd
  286. *
  287. IF( NORMALTRANSR ) THEN
  288. *
  289. * N is odd and TRANSR = 'N'
  290. *
  291. IF( LOWER ) THEN
  292. *
  293. * N is odd, TRANSR = 'N', and UPLO = 'L'
  294. *
  295. IJ = 0
  296. DO J = 0, N2
  297. DO I = N1, N2 + J
  298. ARF( IJ ) = A( N2+J, I )
  299. IJ = IJ + 1
  300. END DO
  301. DO I = J, N - 1
  302. ARF( IJ ) = A( I, J )
  303. IJ = IJ + 1
  304. END DO
  305. END DO
  306. *
  307. ELSE
  308. *
  309. * N is odd, TRANSR = 'N', and UPLO = 'U'
  310. *
  311. IJ = NT - N
  312. DO J = N - 1, N1, -1
  313. DO I = 0, J
  314. ARF( IJ ) = A( I, J )
  315. IJ = IJ + 1
  316. END DO
  317. DO L = J - N1, N1 - 1
  318. ARF( IJ ) = A( J-N1, L )
  319. IJ = IJ + 1
  320. END DO
  321. IJ = IJ - NX2
  322. END DO
  323. *
  324. END IF
  325. *
  326. ELSE
  327. *
  328. * N is odd and TRANSR = 'T'
  329. *
  330. IF( LOWER ) THEN
  331. *
  332. * N is odd, TRANSR = 'T', and UPLO = 'L'
  333. *
  334. IJ = 0
  335. DO J = 0, N2 - 1
  336. DO I = 0, J
  337. ARF( IJ ) = A( J, I )
  338. IJ = IJ + 1
  339. END DO
  340. DO I = N1 + J, N - 1
  341. ARF( IJ ) = A( I, N1+J )
  342. IJ = IJ + 1
  343. END DO
  344. END DO
  345. DO J = N2, N - 1
  346. DO I = 0, N1 - 1
  347. ARF( IJ ) = A( J, I )
  348. IJ = IJ + 1
  349. END DO
  350. END DO
  351. *
  352. ELSE
  353. *
  354. * N is odd, TRANSR = 'T', and UPLO = 'U'
  355. *
  356. IJ = 0
  357. DO J = 0, N1
  358. DO I = N1, N - 1
  359. ARF( IJ ) = A( J, I )
  360. IJ = IJ + 1
  361. END DO
  362. END DO
  363. DO J = 0, N1 - 1
  364. DO I = 0, J
  365. ARF( IJ ) = A( I, J )
  366. IJ = IJ + 1
  367. END DO
  368. DO L = N2 + J, N - 1
  369. ARF( IJ ) = A( N2+J, L )
  370. IJ = IJ + 1
  371. END DO
  372. END DO
  373. *
  374. END IF
  375. *
  376. END IF
  377. *
  378. ELSE
  379. *
  380. * N is even
  381. *
  382. IF( NORMALTRANSR ) THEN
  383. *
  384. * N is even and TRANSR = 'N'
  385. *
  386. IF( LOWER ) THEN
  387. *
  388. * N is even, TRANSR = 'N', and UPLO = 'L'
  389. *
  390. IJ = 0
  391. DO J = 0, K - 1
  392. DO I = K, K + J
  393. ARF( IJ ) = A( K+J, I )
  394. IJ = IJ + 1
  395. END DO
  396. DO I = J, N - 1
  397. ARF( IJ ) = A( I, J )
  398. IJ = IJ + 1
  399. END DO
  400. END DO
  401. *
  402. ELSE
  403. *
  404. * N is even, TRANSR = 'N', and UPLO = 'U'
  405. *
  406. IJ = NT - N - 1
  407. DO J = N - 1, K, -1
  408. DO I = 0, J
  409. ARF( IJ ) = A( I, J )
  410. IJ = IJ + 1
  411. END DO
  412. DO L = J - K, K - 1
  413. ARF( IJ ) = A( J-K, L )
  414. IJ = IJ + 1
  415. END DO
  416. IJ = IJ - NP1X2
  417. END DO
  418. *
  419. END IF
  420. *
  421. ELSE
  422. *
  423. * N is even and TRANSR = 'T'
  424. *
  425. IF( LOWER ) THEN
  426. *
  427. * N is even, TRANSR = 'T', and UPLO = 'L'
  428. *
  429. IJ = 0
  430. J = K
  431. DO I = K, N - 1
  432. ARF( IJ ) = A( I, J )
  433. IJ = IJ + 1
  434. END DO
  435. DO J = 0, K - 2
  436. DO I = 0, J
  437. ARF( IJ ) = A( J, I )
  438. IJ = IJ + 1
  439. END DO
  440. DO I = K + 1 + J, N - 1
  441. ARF( IJ ) = A( I, K+1+J )
  442. IJ = IJ + 1
  443. END DO
  444. END DO
  445. DO J = K - 1, N - 1
  446. DO I = 0, K - 1
  447. ARF( IJ ) = A( J, I )
  448. IJ = IJ + 1
  449. END DO
  450. END DO
  451. *
  452. ELSE
  453. *
  454. * N is even, TRANSR = 'T', and UPLO = 'U'
  455. *
  456. IJ = 0
  457. DO J = 0, K
  458. DO I = K, N - 1
  459. ARF( IJ ) = A( J, I )
  460. IJ = IJ + 1
  461. END DO
  462. END DO
  463. DO J = 0, K - 2
  464. DO I = 0, J
  465. ARF( IJ ) = A( I, J )
  466. IJ = IJ + 1
  467. END DO
  468. DO L = K + 1 + J, N - 1
  469. ARF( IJ ) = A( K+1+J, L )
  470. IJ = IJ + 1
  471. END DO
  472. END DO
  473. * Note that here, on exit of the loop, J = K-1
  474. DO I = 0, J
  475. ARF( IJ ) = A( I, J )
  476. IJ = IJ + 1
  477. END DO
  478. *
  479. END IF
  480. *
  481. END IF
  482. *
  483. END IF
  484. *
  485. RETURN
  486. *
  487. * End of DTRTTF
  488. *
  489. END