You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpstrf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. *> \brief \b DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
  2. *
  3. *
  4. * =========== DOCUMENTATION ===========
  5. *
  6. * Online html documentation available at
  7. * http://www.netlib.org/lapack/explore-html/
  8. *
  9. *> \htmlonly
  10. *> Download DPSTRF + dependencies
  11. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstrf.f">
  12. *> [TGZ]</a>
  13. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstrf.f">
  14. *> [ZIP]</a>
  15. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstrf.f">
  16. *> [TXT]</a>
  17. *> \endhtmlonly
  18. *
  19. * Definition:
  20. * ===========
  21. *
  22. * SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION TOL
  26. * INTEGER INFO, LDA, N, RANK
  27. * CHARACTER UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DPSTRF computes the Cholesky factorization with complete
  41. *> pivoting of a real symmetric positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**T * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**T, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 3 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[out] PIV
  93. *> \verbatim
  94. *> PIV is INTEGER array, dimension (N)
  95. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] RANK
  99. *> \verbatim
  100. *> RANK is INTEGER
  101. *> The rank of A given by the number of steps the algorithm
  102. *> completed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] TOL
  106. *> \verbatim
  107. *> TOL is DOUBLE PRECISION
  108. *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109. *> will be used. The algorithm terminates at the (K-1)st step
  110. *> if the pivot <= TOL.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is not positive semidefinite. See
  126. *> Section 7 of LAPACK Working Note #161 for further
  127. *> information.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \ingroup doubleOTHERcomputational
  139. *
  140. * =====================================================================
  141. SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142. *
  143. * -- LAPACK computational routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. DOUBLE PRECISION TOL
  149. INTEGER INFO, LDA, N, RANK
  150. CHARACTER UPLO
  151. * ..
  152. * .. Array Arguments ..
  153. DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  154. INTEGER PIV( N )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Parameters ..
  160. DOUBLE PRECISION ONE, ZERO
  161. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  162. * ..
  163. * .. Local Scalars ..
  164. DOUBLE PRECISION AJJ, DSTOP, DTEMP
  165. INTEGER I, ITEMP, J, JB, K, NB, PVT
  166. LOGICAL UPPER
  167. * ..
  168. * .. External Functions ..
  169. DOUBLE PRECISION DLAMCH
  170. INTEGER ILAENV
  171. LOGICAL LSAME, DISNAN
  172. EXTERNAL DLAMCH, ILAENV, LSAME, DISNAN
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL DGEMV, DPSTF2, DSCAL, DSWAP, DSYRK, XERBLA
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC MAX, MIN, SQRT, MAXLOC
  179. * ..
  180. * .. Executable Statements ..
  181. *
  182. * Test the input parameters.
  183. *
  184. INFO = 0
  185. UPPER = LSAME( UPLO, 'U' )
  186. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  187. INFO = -1
  188. ELSE IF( N.LT.0 ) THEN
  189. INFO = -2
  190. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  191. INFO = -4
  192. END IF
  193. IF( INFO.NE.0 ) THEN
  194. CALL XERBLA( 'DPSTRF', -INFO )
  195. RETURN
  196. END IF
  197. *
  198. * Quick return if possible
  199. *
  200. IF( N.EQ.0 )
  201. $ RETURN
  202. *
  203. * Get block size
  204. *
  205. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  206. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  207. *
  208. * Use unblocked code
  209. *
  210. CALL DPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  211. $ INFO )
  212. GO TO 200
  213. *
  214. ELSE
  215. *
  216. * Initialize PIV
  217. *
  218. DO 100 I = 1, N
  219. PIV( I ) = I
  220. 100 CONTINUE
  221. *
  222. * Compute stopping value
  223. *
  224. PVT = 1
  225. AJJ = A( PVT, PVT )
  226. DO I = 2, N
  227. IF( A( I, I ).GT.AJJ ) THEN
  228. PVT = I
  229. AJJ = A( PVT, PVT )
  230. END IF
  231. END DO
  232. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  233. RANK = 0
  234. INFO = 1
  235. GO TO 200
  236. END IF
  237. *
  238. * Compute stopping value if not supplied
  239. *
  240. IF( TOL.LT.ZERO ) THEN
  241. DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  242. ELSE
  243. DSTOP = TOL
  244. END IF
  245. *
  246. *
  247. IF( UPPER ) THEN
  248. *
  249. * Compute the Cholesky factorization P**T * A * P = U**T * U
  250. *
  251. DO 140 K = 1, N, NB
  252. *
  253. * Account for last block not being NB wide
  254. *
  255. JB = MIN( NB, N-K+1 )
  256. *
  257. * Set relevant part of first half of WORK to zero,
  258. * holds dot products
  259. *
  260. DO 110 I = K, N
  261. WORK( I ) = 0
  262. 110 CONTINUE
  263. *
  264. DO 130 J = K, K + JB - 1
  265. *
  266. * Find pivot, test for exit, else swap rows and columns
  267. * Update dot products, compute possible pivots which are
  268. * stored in the second half of WORK
  269. *
  270. DO 120 I = J, N
  271. *
  272. IF( J.GT.K ) THEN
  273. WORK( I ) = WORK( I ) + A( J-1, I )**2
  274. END IF
  275. WORK( N+I ) = A( I, I ) - WORK( I )
  276. *
  277. 120 CONTINUE
  278. *
  279. IF( J.GT.1 ) THEN
  280. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  281. PVT = ITEMP + J - 1
  282. AJJ = WORK( N+PVT )
  283. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  284. A( J, J ) = AJJ
  285. GO TO 190
  286. END IF
  287. END IF
  288. *
  289. IF( J.NE.PVT ) THEN
  290. *
  291. * Pivot OK, so can now swap pivot rows and columns
  292. *
  293. A( PVT, PVT ) = A( J, J )
  294. CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  295. IF( PVT.LT.N )
  296. $ CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  297. $ A( PVT, PVT+1 ), LDA )
  298. CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA,
  299. $ A( J+1, PVT ), 1 )
  300. *
  301. * Swap dot products and PIV
  302. *
  303. DTEMP = WORK( J )
  304. WORK( J ) = WORK( PVT )
  305. WORK( PVT ) = DTEMP
  306. ITEMP = PIV( PVT )
  307. PIV( PVT ) = PIV( J )
  308. PIV( J ) = ITEMP
  309. END IF
  310. *
  311. AJJ = SQRT( AJJ )
  312. A( J, J ) = AJJ
  313. *
  314. * Compute elements J+1:N of row J.
  315. *
  316. IF( J.LT.N ) THEN
  317. CALL DGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
  318. $ LDA, A( K, J ), 1, ONE, A( J, J+1 ),
  319. $ LDA )
  320. CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  321. END IF
  322. *
  323. 130 CONTINUE
  324. *
  325. * Update trailing matrix, J already incremented
  326. *
  327. IF( K+JB.LE.N ) THEN
  328. CALL DSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
  329. $ A( K, J ), LDA, ONE, A( J, J ), LDA )
  330. END IF
  331. *
  332. 140 CONTINUE
  333. *
  334. ELSE
  335. *
  336. * Compute the Cholesky factorization P**T * A * P = L * L**T
  337. *
  338. DO 180 K = 1, N, NB
  339. *
  340. * Account for last block not being NB wide
  341. *
  342. JB = MIN( NB, N-K+1 )
  343. *
  344. * Set relevant part of first half of WORK to zero,
  345. * holds dot products
  346. *
  347. DO 150 I = K, N
  348. WORK( I ) = 0
  349. 150 CONTINUE
  350. *
  351. DO 170 J = K, K + JB - 1
  352. *
  353. * Find pivot, test for exit, else swap rows and columns
  354. * Update dot products, compute possible pivots which are
  355. * stored in the second half of WORK
  356. *
  357. DO 160 I = J, N
  358. *
  359. IF( J.GT.K ) THEN
  360. WORK( I ) = WORK( I ) + A( I, J-1 )**2
  361. END IF
  362. WORK( N+I ) = A( I, I ) - WORK( I )
  363. *
  364. 160 CONTINUE
  365. *
  366. IF( J.GT.1 ) THEN
  367. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  368. PVT = ITEMP + J - 1
  369. AJJ = WORK( N+PVT )
  370. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  371. A( J, J ) = AJJ
  372. GO TO 190
  373. END IF
  374. END IF
  375. *
  376. IF( J.NE.PVT ) THEN
  377. *
  378. * Pivot OK, so can now swap pivot rows and columns
  379. *
  380. A( PVT, PVT ) = A( J, J )
  381. CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  382. IF( PVT.LT.N )
  383. $ CALL DSWAP( N-PVT, A( PVT+1, J ), 1,
  384. $ A( PVT+1, PVT ), 1 )
  385. CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
  386. $ LDA )
  387. *
  388. * Swap dot products and PIV
  389. *
  390. DTEMP = WORK( J )
  391. WORK( J ) = WORK( PVT )
  392. WORK( PVT ) = DTEMP
  393. ITEMP = PIV( PVT )
  394. PIV( PVT ) = PIV( J )
  395. PIV( J ) = ITEMP
  396. END IF
  397. *
  398. AJJ = SQRT( AJJ )
  399. A( J, J ) = AJJ
  400. *
  401. * Compute elements J+1:N of column J.
  402. *
  403. IF( J.LT.N ) THEN
  404. CALL DGEMV( 'No Trans', N-J, J-K, -ONE,
  405. $ A( J+1, K ), LDA, A( J, K ), LDA, ONE,
  406. $ A( J+1, J ), 1 )
  407. CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  408. END IF
  409. *
  410. 170 CONTINUE
  411. *
  412. * Update trailing matrix, J already incremented
  413. *
  414. IF( K+JB.LE.N ) THEN
  415. CALL DSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  416. $ A( J, K ), LDA, ONE, A( J, J ), LDA )
  417. END IF
  418. *
  419. 180 CONTINUE
  420. *
  421. END IF
  422. END IF
  423. *
  424. * Ran to completion, A has full rank
  425. *
  426. RANK = N
  427. *
  428. GO TO 200
  429. 190 CONTINUE
  430. *
  431. * Rank is the number of steps completed. Set INFO = 1 to signal
  432. * that the factorization cannot be used to solve a system.
  433. *
  434. RANK = J - 1
  435. INFO = 1
  436. *
  437. 200 CONTINUE
  438. RETURN
  439. *
  440. * End of DPSTRF
  441. *
  442. END