You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_syrcond.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. *> \brief \b DLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_SYRCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrcond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrcond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrcond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
  22. * IPIV, CMODE, C, INFO, WORK,
  23. * IWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER UPLO
  27. * INTEGER N, LDA, LDAF, INFO, CMODE
  28. * ..
  29. * .. Array Arguments
  30. * INTEGER IWORK( * ), IPIV( * )
  31. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DLA_SYRCOND estimates the Skeel condition number of op(A) * op2(C)
  41. *> where op2 is determined by CMODE as follows
  42. *> CMODE = 1 op2(C) = C
  43. *> CMODE = 0 op2(C) = I
  44. *> CMODE = -1 op2(C) = inv(C)
  45. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  46. *> is computed by computing scaling factors R such that
  47. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  48. *> infinity-norm condition number.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> = 'U': Upper triangle of A is stored;
  58. *> = 'L': Lower triangle of A is stored.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The number of linear equations, i.e., the order of the
  65. *> matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, the N-by-N matrix A.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[in] AF
  81. *> \verbatim
  82. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  83. *> The block diagonal matrix D and the multipliers used to
  84. *> obtain the factor U or L as computed by DSYTRF.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDAF
  88. *> \verbatim
  89. *> LDAF is INTEGER
  90. *> The leading dimension of the array AF. LDAF >= max(1,N).
  91. *> \endverbatim
  92. *>
  93. *> \param[in] IPIV
  94. *> \verbatim
  95. *> IPIV is INTEGER array, dimension (N)
  96. *> Details of the interchanges and the block structure of D
  97. *> as determined by DSYTRF.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] CMODE
  101. *> \verbatim
  102. *> CMODE is INTEGER
  103. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  104. *> CMODE = 1 op2(C) = C
  105. *> CMODE = 0 op2(C) = I
  106. *> CMODE = -1 op2(C) = inv(C)
  107. *> \endverbatim
  108. *>
  109. *> \param[in] C
  110. *> \verbatim
  111. *> C is DOUBLE PRECISION array, dimension (N)
  112. *> The vector C in the formula op(A) * op2(C).
  113. *> \endverbatim
  114. *>
  115. *> \param[out] INFO
  116. *> \verbatim
  117. *> INFO is INTEGER
  118. *> = 0: Successful exit.
  119. *> i > 0: The ith argument is invalid.
  120. *> \endverbatim
  121. *>
  122. *> \param[out] WORK
  123. *> \verbatim
  124. *> WORK is DOUBLE PRECISION array, dimension (3*N).
  125. *> Workspace.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] IWORK
  129. *> \verbatim
  130. *> IWORK is INTEGER array, dimension (N).
  131. *> Workspace.
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \ingroup doubleSYcomputational
  143. *
  144. * =====================================================================
  145. DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF,
  146. $ IPIV, CMODE, C, INFO, WORK,
  147. $ IWORK )
  148. *
  149. * -- LAPACK computational routine --
  150. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  151. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  152. *
  153. * .. Scalar Arguments ..
  154. CHARACTER UPLO
  155. INTEGER N, LDA, LDAF, INFO, CMODE
  156. * ..
  157. * .. Array Arguments
  158. INTEGER IWORK( * ), IPIV( * )
  159. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
  160. * ..
  161. *
  162. * =====================================================================
  163. *
  164. * .. Local Scalars ..
  165. CHARACTER NORMIN
  166. INTEGER KASE, I, J
  167. DOUBLE PRECISION AINVNM, SMLNUM, TMP
  168. LOGICAL UP
  169. * ..
  170. * .. Local Arrays ..
  171. INTEGER ISAVE( 3 )
  172. * ..
  173. * .. External Functions ..
  174. LOGICAL LSAME
  175. DOUBLE PRECISION DLAMCH
  176. EXTERNAL LSAME, DLAMCH
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL DLACN2, XERBLA, DSYTRS
  180. * ..
  181. * .. Intrinsic Functions ..
  182. INTRINSIC ABS, MAX
  183. * ..
  184. * .. Executable Statements ..
  185. *
  186. DLA_SYRCOND = 0.0D+0
  187. *
  188. INFO = 0
  189. IF( N.LT.0 ) THEN
  190. INFO = -2
  191. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192. INFO = -4
  193. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  194. INFO = -6
  195. END IF
  196. IF( INFO.NE.0 ) THEN
  197. CALL XERBLA( 'DLA_SYRCOND', -INFO )
  198. RETURN
  199. END IF
  200. IF( N.EQ.0 ) THEN
  201. DLA_SYRCOND = 1.0D+0
  202. RETURN
  203. END IF
  204. UP = .FALSE.
  205. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  206. *
  207. * Compute the equilibration matrix R such that
  208. * inv(R)*A*C has unit 1-norm.
  209. *
  210. IF ( UP ) THEN
  211. DO I = 1, N
  212. TMP = 0.0D+0
  213. IF ( CMODE .EQ. 1 ) THEN
  214. DO J = 1, I
  215. TMP = TMP + ABS( A( J, I ) * C( J ) )
  216. END DO
  217. DO J = I+1, N
  218. TMP = TMP + ABS( A( I, J ) * C( J ) )
  219. END DO
  220. ELSE IF ( CMODE .EQ. 0 ) THEN
  221. DO J = 1, I
  222. TMP = TMP + ABS( A( J, I ) )
  223. END DO
  224. DO J = I+1, N
  225. TMP = TMP + ABS( A( I, J ) )
  226. END DO
  227. ELSE
  228. DO J = 1, I
  229. TMP = TMP + ABS( A( J, I ) / C( J ) )
  230. END DO
  231. DO J = I+1, N
  232. TMP = TMP + ABS( A( I, J ) / C( J ) )
  233. END DO
  234. END IF
  235. WORK( 2*N+I ) = TMP
  236. END DO
  237. ELSE
  238. DO I = 1, N
  239. TMP = 0.0D+0
  240. IF ( CMODE .EQ. 1 ) THEN
  241. DO J = 1, I
  242. TMP = TMP + ABS( A( I, J ) * C( J ) )
  243. END DO
  244. DO J = I+1, N
  245. TMP = TMP + ABS( A( J, I ) * C( J ) )
  246. END DO
  247. ELSE IF ( CMODE .EQ. 0 ) THEN
  248. DO J = 1, I
  249. TMP = TMP + ABS( A( I, J ) )
  250. END DO
  251. DO J = I+1, N
  252. TMP = TMP + ABS( A( J, I ) )
  253. END DO
  254. ELSE
  255. DO J = 1, I
  256. TMP = TMP + ABS( A( I, J) / C( J ) )
  257. END DO
  258. DO J = I+1, N
  259. TMP = TMP + ABS( A( J, I) / C( J ) )
  260. END DO
  261. END IF
  262. WORK( 2*N+I ) = TMP
  263. END DO
  264. ENDIF
  265. *
  266. * Estimate the norm of inv(op(A)).
  267. *
  268. SMLNUM = DLAMCH( 'Safe minimum' )
  269. AINVNM = 0.0D+0
  270. NORMIN = 'N'
  271. KASE = 0
  272. 10 CONTINUE
  273. CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  274. IF( KASE.NE.0 ) THEN
  275. IF( KASE.EQ.2 ) THEN
  276. *
  277. * Multiply by R.
  278. *
  279. DO I = 1, N
  280. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  281. END DO
  282. IF ( UP ) THEN
  283. CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  284. ELSE
  285. CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  286. ENDIF
  287. *
  288. * Multiply by inv(C).
  289. *
  290. IF ( CMODE .EQ. 1 ) THEN
  291. DO I = 1, N
  292. WORK( I ) = WORK( I ) / C( I )
  293. END DO
  294. ELSE IF ( CMODE .EQ. -1 ) THEN
  295. DO I = 1, N
  296. WORK( I ) = WORK( I ) * C( I )
  297. END DO
  298. END IF
  299. ELSE
  300. *
  301. * Multiply by inv(C**T).
  302. *
  303. IF ( CMODE .EQ. 1 ) THEN
  304. DO I = 1, N
  305. WORK( I ) = WORK( I ) / C( I )
  306. END DO
  307. ELSE IF ( CMODE .EQ. -1 ) THEN
  308. DO I = 1, N
  309. WORK( I ) = WORK( I ) * C( I )
  310. END DO
  311. END IF
  312. IF ( UP ) THEN
  313. CALL DSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  314. ELSE
  315. CALL DSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  316. ENDIF
  317. *
  318. * Multiply by R.
  319. *
  320. DO I = 1, N
  321. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  322. END DO
  323. END IF
  324. *
  325. GO TO 10
  326. END IF
  327. *
  328. * Compute the estimate of the reciprocal condition number.
  329. *
  330. IF( AINVNM .NE. 0.0D+0 )
  331. $ DLA_SYRCOND = ( 1.0D+0 / AINVNM )
  332. *
  333. RETURN
  334. *
  335. * End of DLA_SYRCOND
  336. *
  337. END