You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarfgp.f 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. *> \brief \b CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARFGP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfgp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfgp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfgp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INCX, N
  25. * COMPLEX ALPHA, TAU
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX X( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CLARFGP generates a complex elementary reflector H of order n, such
  38. *> that
  39. *>
  40. *> H**H * ( alpha ) = ( beta ), H**H * H = I.
  41. *> ( x ) ( 0 )
  42. *>
  43. *> where alpha and beta are scalars, beta is real and non-negative, and
  44. *> x is an (n-1)-element complex vector. H is represented in the form
  45. *>
  46. *> H = I - tau * ( 1 ) * ( 1 v**H ) ,
  47. *> ( v )
  48. *>
  49. *> where tau is a complex scalar and v is a complex (n-1)-element
  50. *> vector. Note that H is not hermitian.
  51. *>
  52. *> If the elements of x are all zero and alpha is real, then tau = 0
  53. *> and H is taken to be the unit matrix.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the elementary reflector.
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] ALPHA
  66. *> \verbatim
  67. *> ALPHA is COMPLEX
  68. *> On entry, the value alpha.
  69. *> On exit, it is overwritten with the value beta.
  70. *> \endverbatim
  71. *>
  72. *> \param[in,out] X
  73. *> \verbatim
  74. *> X is COMPLEX array, dimension
  75. *> (1+(N-2)*abs(INCX))
  76. *> On entry, the vector x.
  77. *> On exit, it is overwritten with the vector v.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] INCX
  81. *> \verbatim
  82. *> INCX is INTEGER
  83. *> The increment between elements of X. INCX > 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[out] TAU
  87. *> \verbatim
  88. *> TAU is COMPLEX
  89. *> The value tau.
  90. *> \endverbatim
  91. *
  92. * Authors:
  93. * ========
  94. *
  95. *> \author Univ. of Tennessee
  96. *> \author Univ. of California Berkeley
  97. *> \author Univ. of Colorado Denver
  98. *> \author NAG Ltd.
  99. *
  100. *> \ingroup larfgp
  101. *
  102. * =====================================================================
  103. SUBROUTINE CLARFGP( N, ALPHA, X, INCX, TAU )
  104. *
  105. * -- LAPACK auxiliary routine --
  106. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  107. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  108. *
  109. * .. Scalar Arguments ..
  110. INTEGER INCX, N
  111. COMPLEX ALPHA, TAU
  112. * ..
  113. * .. Array Arguments ..
  114. COMPLEX X( * )
  115. * ..
  116. *
  117. * =====================================================================
  118. *
  119. * .. Parameters ..
  120. REAL TWO, ONE, ZERO
  121. PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
  122. * ..
  123. * .. Local Scalars ..
  124. INTEGER J, KNT
  125. REAL ALPHI, ALPHR, BETA, BIGNUM, EPS, SMLNUM, XNORM
  126. COMPLEX SAVEALPHA
  127. * ..
  128. * .. External Functions ..
  129. REAL SCNRM2, SLAMCH, SLAPY3, SLAPY2
  130. COMPLEX CLADIV
  131. EXTERNAL SCNRM2, SLAMCH, SLAPY3, SLAPY2, CLADIV
  132. * ..
  133. * .. Intrinsic Functions ..
  134. INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN
  135. * ..
  136. * .. External Subroutines ..
  137. EXTERNAL CSCAL, CSSCAL
  138. * ..
  139. * .. Executable Statements ..
  140. *
  141. IF( N.LE.0 ) THEN
  142. TAU = ZERO
  143. RETURN
  144. END IF
  145. *
  146. EPS = SLAMCH( 'Precision' )
  147. XNORM = SCNRM2( N-1, X, INCX )
  148. ALPHR = REAL( ALPHA )
  149. ALPHI = AIMAG( ALPHA )
  150. *
  151. IF( XNORM.LE.EPS*ABS(ALPHA) ) THEN
  152. *
  153. * H = [1-alpha/abs(alpha) 0; 0 I], sign chosen so ALPHA >= 0.
  154. *
  155. IF( ALPHI.EQ.ZERO ) THEN
  156. IF( ALPHR.GE.ZERO ) THEN
  157. * When TAU.eq.ZERO, the vector is special-cased to be
  158. * all zeros in the application routines. We do not need
  159. * to clear it.
  160. TAU = ZERO
  161. ELSE
  162. * However, the application routines rely on explicit
  163. * zero checks when TAU.ne.ZERO, and we must clear X.
  164. TAU = TWO
  165. DO J = 1, N-1
  166. X( 1 + (J-1)*INCX ) = ZERO
  167. END DO
  168. ALPHA = -ALPHA
  169. END IF
  170. ELSE
  171. * Only "reflecting" the diagonal entry to be real and non-negative.
  172. XNORM = SLAPY2( ALPHR, ALPHI )
  173. TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  174. DO J = 1, N-1
  175. X( 1 + (J-1)*INCX ) = ZERO
  176. END DO
  177. ALPHA = XNORM
  178. END IF
  179. ELSE
  180. *
  181. * general case
  182. *
  183. BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  184. SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' )
  185. BIGNUM = ONE / SMLNUM
  186. *
  187. KNT = 0
  188. IF( ABS( BETA ).LT.SMLNUM ) THEN
  189. *
  190. * XNORM, BETA may be inaccurate; scale X and recompute them
  191. *
  192. 10 CONTINUE
  193. KNT = KNT + 1
  194. CALL CSSCAL( N-1, BIGNUM, X, INCX )
  195. BETA = BETA*BIGNUM
  196. ALPHI = ALPHI*BIGNUM
  197. ALPHR = ALPHR*BIGNUM
  198. IF( (ABS( BETA ).LT.SMLNUM) .AND. (KNT .LT. 20) )
  199. $ GO TO 10
  200. *
  201. * New BETA is at most 1, at least SMLNUM
  202. *
  203. XNORM = SCNRM2( N-1, X, INCX )
  204. ALPHA = CMPLX( ALPHR, ALPHI )
  205. BETA = SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
  206. END IF
  207. SAVEALPHA = ALPHA
  208. ALPHA = ALPHA + BETA
  209. IF( BETA.LT.ZERO ) THEN
  210. BETA = -BETA
  211. TAU = -ALPHA / BETA
  212. ELSE
  213. ALPHR = ALPHI * (ALPHI/REAL( ALPHA ))
  214. ALPHR = ALPHR + XNORM * (XNORM/REAL( ALPHA ))
  215. TAU = CMPLX( ALPHR/BETA, -ALPHI/BETA )
  216. ALPHA = CMPLX( -ALPHR, ALPHI )
  217. END IF
  218. ALPHA = CLADIV( CMPLX( ONE ), ALPHA )
  219. *
  220. IF ( ABS(TAU).LE.SMLNUM ) THEN
  221. *
  222. * In the case where the computed TAU ends up being a denormalized number,
  223. * it loses relative accuracy. This is a BIG problem. Solution: flush TAU
  224. * to ZERO (or TWO or whatever makes a nonnegative real number for BETA).
  225. *
  226. * (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
  227. * (Thanks Pat. Thanks MathWorks.)
  228. *
  229. ALPHR = REAL( SAVEALPHA )
  230. ALPHI = AIMAG( SAVEALPHA )
  231. IF( ALPHI.EQ.ZERO ) THEN
  232. IF( ALPHR.GE.ZERO ) THEN
  233. TAU = ZERO
  234. ELSE
  235. TAU = TWO
  236. DO J = 1, N-1
  237. X( 1 + (J-1)*INCX ) = ZERO
  238. END DO
  239. BETA = REAL( -SAVEALPHA )
  240. END IF
  241. ELSE
  242. XNORM = SLAPY2( ALPHR, ALPHI )
  243. TAU = CMPLX( ONE - ALPHR / XNORM, -ALPHI / XNORM )
  244. DO J = 1, N-1
  245. X( 1 + (J-1)*INCX ) = ZERO
  246. END DO
  247. BETA = XNORM
  248. END IF
  249. *
  250. ELSE
  251. *
  252. * This is the general case.
  253. *
  254. CALL CSCAL( N-1, ALPHA, X, INCX )
  255. *
  256. END IF
  257. *
  258. * If BETA is subnormal, it may lose relative accuracy
  259. *
  260. DO 20 J = 1, KNT
  261. BETA = BETA*SMLNUM
  262. 20 CONTINUE
  263. ALPHA = BETA
  264. END IF
  265. *
  266. RETURN
  267. *
  268. * End of CLARFGP
  269. *
  270. END