You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpstrf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. *> \brief \b DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
  2. *
  3. *
  4. * =========== DOCUMENTATION ===========
  5. *
  6. * Online html documentation available at
  7. * http://www.netlib.org/lapack/explore-html/
  8. *
  9. *> \htmlonly
  10. *> Download DPSTRF + dependencies
  11. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstrf.f">
  12. *> [TGZ]</a>
  13. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstrf.f">
  14. *> [ZIP]</a>
  15. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstrf.f">
  16. *> [TXT]</a>
  17. *> \endhtmlonly
  18. *
  19. * Definition:
  20. * ===========
  21. *
  22. * SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION TOL
  26. * INTEGER INFO, LDA, N, RANK
  27. * CHARACTER UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DPSTRF computes the Cholesky factorization with complete
  41. *> pivoting of a real symmetric positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**T * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**T, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 3 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDA
  87. *> \verbatim
  88. *> LDA is INTEGER
  89. *> The leading dimension of the array A. LDA >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[out] PIV
  93. *> \verbatim
  94. *> PIV is INTEGER array, dimension (N)
  95. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] RANK
  99. *> \verbatim
  100. *> RANK is INTEGER
  101. *> The rank of A given by the number of steps the algorithm
  102. *> completed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] TOL
  106. *> \verbatim
  107. *> TOL is DOUBLE PRECISION
  108. *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  109. *> will be used. The algorithm terminates at the (K-1)st step
  110. *> if the pivot <= TOL.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is not positive semidefinite. See
  126. *> Section 7 of LAPACK Working Note #161 for further
  127. *> information.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \date December 2016
  139. *
  140. *> \ingroup doubleOTHERcomputational
  141. *
  142. * =====================================================================
  143. SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  144. *
  145. * -- LAPACK computational routine (version 3.7.0) --
  146. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  147. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148. * December 2016
  149. *
  150. * .. Scalar Arguments ..
  151. DOUBLE PRECISION TOL
  152. INTEGER INFO, LDA, N, RANK
  153. CHARACTER UPLO
  154. * ..
  155. * .. Array Arguments ..
  156. DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  157. INTEGER PIV( N )
  158. * ..
  159. *
  160. * =====================================================================
  161. *
  162. * .. Parameters ..
  163. DOUBLE PRECISION ONE, ZERO
  164. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  165. * ..
  166. * .. Local Scalars ..
  167. DOUBLE PRECISION AJJ, DSTOP, DTEMP
  168. INTEGER I, ITEMP, J, JB, K, NB, PVT
  169. LOGICAL UPPER
  170. * ..
  171. * .. External Functions ..
  172. DOUBLE PRECISION DLAMCH
  173. INTEGER ILAENV
  174. LOGICAL LSAME, DISNAN
  175. EXTERNAL DLAMCH, ILAENV, LSAME, DISNAN
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL DGEMV, DPSTF2, DSCAL, DSWAP, DSYRK, XERBLA
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC MAX, MIN, SQRT, MAXLOC
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. * Test the input parameters.
  186. *
  187. INFO = 0
  188. UPPER = LSAME( UPLO, 'U' )
  189. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  190. INFO = -1
  191. ELSE IF( N.LT.0 ) THEN
  192. INFO = -2
  193. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  194. INFO = -4
  195. END IF
  196. IF( INFO.NE.0 ) THEN
  197. CALL XERBLA( 'DPSTRF', -INFO )
  198. RETURN
  199. END IF
  200. *
  201. * Quick return if possible
  202. *
  203. IF( N.EQ.0 )
  204. $ RETURN
  205. *
  206. * Get block size
  207. *
  208. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  209. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  210. *
  211. * Use unblocked code
  212. *
  213. CALL DPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  214. $ INFO )
  215. GO TO 200
  216. *
  217. ELSE
  218. *
  219. * Initialize PIV
  220. *
  221. DO 100 I = 1, N
  222. PIV( I ) = I
  223. 100 CONTINUE
  224. *
  225. * Compute stopping value
  226. *
  227. PVT = 1
  228. AJJ = A( PVT, PVT )
  229. DO I = 2, N
  230. IF( A( I, I ).GT.AJJ ) THEN
  231. PVT = I
  232. AJJ = A( PVT, PVT )
  233. END IF
  234. END DO
  235. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  236. RANK = 0
  237. INFO = 1
  238. GO TO 200
  239. END IF
  240. *
  241. * Compute stopping value if not supplied
  242. *
  243. IF( TOL.LT.ZERO ) THEN
  244. DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  245. ELSE
  246. DSTOP = TOL
  247. END IF
  248. *
  249. *
  250. IF( UPPER ) THEN
  251. *
  252. * Compute the Cholesky factorization P**T * A * P = U**T * U
  253. *
  254. DO 140 K = 1, N, NB
  255. *
  256. * Account for last block not being NB wide
  257. *
  258. JB = MIN( NB, N-K+1 )
  259. *
  260. * Set relevant part of first half of WORK to zero,
  261. * holds dot products
  262. *
  263. DO 110 I = K, N
  264. WORK( I ) = 0
  265. 110 CONTINUE
  266. *
  267. DO 130 J = K, K + JB - 1
  268. *
  269. * Find pivot, test for exit, else swap rows and columns
  270. * Update dot products, compute possible pivots which are
  271. * stored in the second half of WORK
  272. *
  273. DO 120 I = J, N
  274. *
  275. IF( J.GT.K ) THEN
  276. WORK( I ) = WORK( I ) + A( J-1, I )**2
  277. END IF
  278. WORK( N+I ) = A( I, I ) - WORK( I )
  279. *
  280. 120 CONTINUE
  281. *
  282. IF( J.GT.1 ) THEN
  283. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  284. PVT = ITEMP + J - 1
  285. AJJ = WORK( N+PVT )
  286. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  287. A( J, J ) = AJJ
  288. GO TO 190
  289. END IF
  290. END IF
  291. *
  292. IF( J.NE.PVT ) THEN
  293. *
  294. * Pivot OK, so can now swap pivot rows and columns
  295. *
  296. A( PVT, PVT ) = A( J, J )
  297. CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  298. IF( PVT.LT.N )
  299. $ CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  300. $ A( PVT, PVT+1 ), LDA )
  301. CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA,
  302. $ A( J+1, PVT ), 1 )
  303. *
  304. * Swap dot products and PIV
  305. *
  306. DTEMP = WORK( J )
  307. WORK( J ) = WORK( PVT )
  308. WORK( PVT ) = DTEMP
  309. ITEMP = PIV( PVT )
  310. PIV( PVT ) = PIV( J )
  311. PIV( J ) = ITEMP
  312. END IF
  313. *
  314. AJJ = SQRT( AJJ )
  315. A( J, J ) = AJJ
  316. *
  317. * Compute elements J+1:N of row J.
  318. *
  319. IF( J.LT.N ) THEN
  320. CALL DGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
  321. $ LDA, A( K, J ), 1, ONE, A( J, J+1 ),
  322. $ LDA )
  323. CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  324. END IF
  325. *
  326. 130 CONTINUE
  327. *
  328. * Update trailing matrix, J already incremented
  329. *
  330. IF( K+JB.LE.N ) THEN
  331. CALL DSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
  332. $ A( K, J ), LDA, ONE, A( J, J ), LDA )
  333. END IF
  334. *
  335. 140 CONTINUE
  336. *
  337. ELSE
  338. *
  339. * Compute the Cholesky factorization P**T * A * P = L * L**T
  340. *
  341. DO 180 K = 1, N, NB
  342. *
  343. * Account for last block not being NB wide
  344. *
  345. JB = MIN( NB, N-K+1 )
  346. *
  347. * Set relevant part of first half of WORK to zero,
  348. * holds dot products
  349. *
  350. DO 150 I = K, N
  351. WORK( I ) = 0
  352. 150 CONTINUE
  353. *
  354. DO 170 J = K, K + JB - 1
  355. *
  356. * Find pivot, test for exit, else swap rows and columns
  357. * Update dot products, compute possible pivots which are
  358. * stored in the second half of WORK
  359. *
  360. DO 160 I = J, N
  361. *
  362. IF( J.GT.K ) THEN
  363. WORK( I ) = WORK( I ) + A( I, J-1 )**2
  364. END IF
  365. WORK( N+I ) = A( I, I ) - WORK( I )
  366. *
  367. 160 CONTINUE
  368. *
  369. IF( J.GT.1 ) THEN
  370. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  371. PVT = ITEMP + J - 1
  372. AJJ = WORK( N+PVT )
  373. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  374. A( J, J ) = AJJ
  375. GO TO 190
  376. END IF
  377. END IF
  378. *
  379. IF( J.NE.PVT ) THEN
  380. *
  381. * Pivot OK, so can now swap pivot rows and columns
  382. *
  383. A( PVT, PVT ) = A( J, J )
  384. CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  385. IF( PVT.LT.N )
  386. $ CALL DSWAP( N-PVT, A( PVT+1, J ), 1,
  387. $ A( PVT+1, PVT ), 1 )
  388. CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
  389. $ LDA )
  390. *
  391. * Swap dot products and PIV
  392. *
  393. DTEMP = WORK( J )
  394. WORK( J ) = WORK( PVT )
  395. WORK( PVT ) = DTEMP
  396. ITEMP = PIV( PVT )
  397. PIV( PVT ) = PIV( J )
  398. PIV( J ) = ITEMP
  399. END IF
  400. *
  401. AJJ = SQRT( AJJ )
  402. A( J, J ) = AJJ
  403. *
  404. * Compute elements J+1:N of column J.
  405. *
  406. IF( J.LT.N ) THEN
  407. CALL DGEMV( 'No Trans', N-J, J-K, -ONE,
  408. $ A( J+1, K ), LDA, A( J, K ), LDA, ONE,
  409. $ A( J+1, J ), 1 )
  410. CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  411. END IF
  412. *
  413. 170 CONTINUE
  414. *
  415. * Update trailing matrix, J already incremented
  416. *
  417. IF( K+JB.LE.N ) THEN
  418. CALL DSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  419. $ A( J, K ), LDA, ONE, A( J, J ), LDA )
  420. END IF
  421. *
  422. 180 CONTINUE
  423. *
  424. END IF
  425. END IF
  426. *
  427. * Ran to completion, A has full rank
  428. *
  429. RANK = N
  430. *
  431. GO TO 200
  432. 190 CONTINUE
  433. *
  434. * Rank is the number of steps completed. Set INFO = 1 to signal
  435. * that the factorization cannot be used to solve a system.
  436. *
  437. RANK = J - 1
  438. INFO = 1
  439. *
  440. 200 CONTINUE
  441. RETURN
  442. *
  443. * End of DPSTRF
  444. *
  445. END