You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spr2_thread.c 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. static int syr_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
  42. FLOAT *a, *x, *y;
  43. BLASLONG incx, incy;
  44. BLASLONG i, m_from, m_to;
  45. FLOAT alpha_r;
  46. #ifdef COMPLEX
  47. FLOAT alpha_i;
  48. #endif
  49. x = (FLOAT *)args -> a;
  50. y = (FLOAT *)args -> b;
  51. a = (FLOAT *)args -> c;
  52. incx = args -> lda;
  53. incy = args -> ldb;
  54. alpha_r = *((FLOAT *)args -> alpha + 0);
  55. #ifdef COMPLEX
  56. alpha_i = *((FLOAT *)args -> alpha + 1);
  57. #endif
  58. m_from = 0;
  59. m_to = args -> m;
  60. if (range_m) {
  61. m_from = *(range_m + 0);
  62. m_to = *(range_m + 1);
  63. }
  64. if (incx != 1) {
  65. #ifndef LOWER
  66. COPY_K(m_to, x, incx, buffer, 1);
  67. #else
  68. COPY_K(args -> m - m_from, x + m_from * incx * COMPSIZE, incx, buffer + m_from * COMPSIZE, 1);
  69. #endif
  70. x = buffer;
  71. buffer += ((COMPSIZE * args -> m + 1023) & ~1023);
  72. }
  73. if (incy != 1) {
  74. #ifndef LOWER
  75. COPY_K(m_to, y, incy, buffer, 1);
  76. #else
  77. COPY_K(args -> m - m_from, y + m_from * incy * COMPSIZE, incy, buffer + m_from * COMPSIZE, 1);
  78. #endif
  79. y = buffer;
  80. }
  81. #ifndef LOWER
  82. a += (m_from + 1) * m_from / 2 * COMPSIZE;
  83. #else
  84. a += (2 * args -> m - m_from + 1) * m_from / 2 * COMPSIZE;
  85. #endif
  86. for (i = m_from; i < m_to; i++){
  87. #if !defined(HEMV) && !defined(HEMVREV)
  88. #ifndef COMPLEX
  89. if (x[i] != ZERO) {
  90. #ifndef LOWER
  91. AXPYU_K(i + 1, 0, 0, alpha_r * x[i], y, 1, a, 1, NULL, 0);
  92. #else
  93. AXPYU_K(args -> m - i, 0, 0, alpha_r * x[i], y + i, 1, a, 1, NULL, 0);
  94. #endif
  95. }
  96. if (y[i] != ZERO) {
  97. #ifndef LOWER
  98. AXPYU_K(i + 1, 0, 0, alpha_r * y[i], x, 1, a, 1, NULL, 0);
  99. #else
  100. AXPYU_K(args -> m - i, 0, 0, alpha_r * y[i], x + i, 1, a, 1, NULL, 0);
  101. #endif
  102. }
  103. #else
  104. if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
  105. #ifndef LOWER
  106. AXPYU_K(i + 1, 0, 0,
  107. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  108. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  109. y, 1, a, 1, NULL, 0);
  110. #else
  111. AXPYU_K(args -> m - i, 0, 0,
  112. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  113. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  114. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  115. #endif
  116. }
  117. if ((y[i * COMPSIZE + 0] != ZERO) || (y[i * COMPSIZE + 1] != ZERO)) {
  118. #ifndef LOWER
  119. AXPYU_K(i + 1, 0, 0,
  120. alpha_r * y[i * COMPSIZE + 0] - alpha_i * y[i * COMPSIZE + 1],
  121. alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  122. x, 1, a, 1, NULL, 0);
  123. #else
  124. AXPYU_K(args -> m - i, 0, 0,
  125. alpha_r * y[i * COMPSIZE + 0] - alpha_i * y[i * COMPSIZE + 1],
  126. alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  127. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  128. #endif
  129. }
  130. #endif
  131. #else
  132. if ((x[i * COMPSIZE + 0] != ZERO) || (x[i * COMPSIZE + 1] != ZERO)) {
  133. #ifndef HEMVREV
  134. #ifndef LOWER
  135. AXPYU_K(i + 1, 0, 0,
  136. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  137. - alpha_i * x[i * COMPSIZE + 0] - alpha_r * x[i * COMPSIZE + 1],
  138. y, 1, a, 1, NULL, 0);
  139. #else
  140. AXPYU_K(args -> m - i, 0, 0,
  141. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  142. - alpha_i * x[i * COMPSIZE + 0] - alpha_r * x[i * COMPSIZE + 1],
  143. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  144. #endif
  145. #else
  146. #ifndef LOWER
  147. AXPYC_K(i + 1, 0, 0,
  148. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  149. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  150. y, 1, a, 1, NULL, 0);
  151. #else
  152. AXPYC_K(args -> m - i, 0, 0,
  153. alpha_r * x[i * COMPSIZE + 0] - alpha_i * x[i * COMPSIZE + 1],
  154. alpha_i * x[i * COMPSIZE + 0] + alpha_r * x[i * COMPSIZE + 1],
  155. y + i * COMPSIZE, 1, a, 1, NULL, 0);
  156. #endif
  157. #endif
  158. }
  159. if ((y[i * COMPSIZE + 0] != ZERO) || (y[i * COMPSIZE + 1] != ZERO)) {
  160. #ifndef HEMVREV
  161. #ifndef LOWER
  162. AXPYU_K(i + 1, 0, 0,
  163. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  164. alpha_i * y[i * COMPSIZE + 0] - alpha_r * y[i * COMPSIZE + 1],
  165. x, 1, a, 1, NULL, 0);
  166. #else
  167. AXPYU_K(args -> m - i, 0, 0,
  168. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  169. alpha_i * y[i * COMPSIZE + 0] - alpha_r * y[i * COMPSIZE + 1],
  170. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  171. #endif
  172. #else
  173. #ifndef LOWER
  174. AXPYC_K(i + 1, 0, 0,
  175. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  176. - alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  177. x, 1, a, 1, NULL, 0);
  178. #else
  179. AXPYC_K(args -> m - i, 0, 0,
  180. alpha_r * y[i * COMPSIZE + 0] + alpha_i * y[i * COMPSIZE + 1],
  181. - alpha_i * y[i * COMPSIZE + 0] + alpha_r * y[i * COMPSIZE + 1],
  182. x + i * COMPSIZE, 1, a, 1, NULL, 0);
  183. #endif
  184. #endif
  185. }
  186. #ifndef LOWER
  187. a[i * COMPSIZE + 1] = ZERO;
  188. #else
  189. a[ 1] = ZERO;
  190. #endif
  191. #endif
  192. #ifndef LOWER
  193. a += (i + 1) * COMPSIZE;
  194. #else
  195. a += (args -> m - i) * COMPSIZE;
  196. #endif
  197. }
  198. return 0;
  199. }
  200. #ifndef COMPLEX
  201. int CNAME(BLASLONG m, FLOAT alpha, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *a, FLOAT *buffer, int nthreads){
  202. #else
  203. int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *a, FLOAT *buffer, int nthreads){
  204. #endif
  205. blas_arg_t args;
  206. blas_queue_t queue[MAX_CPU_NUMBER];
  207. BLASLONG range_m[MAX_CPU_NUMBER + 1];
  208. BLASLONG width, i, num_cpu;
  209. double dnum;
  210. int mask = 7;
  211. #ifdef SMP
  212. #ifndef COMPLEX
  213. #ifdef XDOUBLE
  214. int mode = BLAS_XDOUBLE | BLAS_REAL;
  215. #elif defined(DOUBLE)
  216. int mode = BLAS_DOUBLE | BLAS_REAL;
  217. #else
  218. int mode = BLAS_SINGLE | BLAS_REAL;
  219. #endif
  220. #else
  221. #ifdef XDOUBLE
  222. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  223. #elif defined(DOUBLE)
  224. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  225. #else
  226. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  227. #endif
  228. #endif
  229. #endif
  230. args.m = m;
  231. args.a = (void *)x;
  232. args.b = (void *)y;
  233. args.c = (void *)a;
  234. args.lda = incx;
  235. args.ldb = incy;
  236. #ifndef COMPLEX
  237. args.alpha = (void *)&alpha;
  238. #else
  239. args.alpha = (void *)alpha;
  240. #endif
  241. dnum = (double)m * (double)m / (double)nthreads;
  242. num_cpu = 0;
  243. #ifndef LOWER
  244. range_m[MAX_CPU_NUMBER] = m;
  245. i = 0;
  246. while (i < m){
  247. if (nthreads - num_cpu > 1) {
  248. double di = (double)(m - i);
  249. if (di * di - dnum > 0) {
  250. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  251. } else {
  252. width = m - i;
  253. }
  254. if (width < 16) width = 16;
  255. if (width > m - i) width = m - i;
  256. } else {
  257. width = m - i;
  258. }
  259. range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width;
  260. queue[num_cpu].mode = mode;
  261. queue[num_cpu].routine = syr_kernel;
  262. queue[num_cpu].args = &args;
  263. queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1];
  264. queue[num_cpu].range_n = NULL;
  265. queue[num_cpu].sa = NULL;
  266. queue[num_cpu].sb = NULL;
  267. queue[num_cpu].next = &queue[num_cpu + 1];
  268. num_cpu ++;
  269. i += width;
  270. }
  271. #else
  272. range_m[0] = 0;
  273. i = 0;
  274. while (i < m){
  275. if (nthreads - num_cpu > 1) {
  276. double di = (double)(m - i);
  277. if (di * di - dnum > 0) {
  278. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  279. } else {
  280. width = m - i;
  281. }
  282. if (width < 16) width = 16;
  283. if (width > m - i) width = m - i;
  284. } else {
  285. width = m - i;
  286. }
  287. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  288. queue[num_cpu].mode = mode;
  289. queue[num_cpu].routine = syr_kernel;
  290. queue[num_cpu].args = &args;
  291. queue[num_cpu].range_m = &range_m[num_cpu];
  292. queue[num_cpu].range_n = NULL;
  293. queue[num_cpu].sa = NULL;
  294. queue[num_cpu].sb = NULL;
  295. queue[num_cpu].next = &queue[num_cpu + 1];
  296. num_cpu ++;
  297. i += width;
  298. }
  299. #endif
  300. if (num_cpu) {
  301. queue[0].sa = NULL;
  302. queue[0].sb = buffer;
  303. queue[num_cpu - 1].next = NULL;
  304. exec_blas(num_cpu, queue);
  305. }
  306. return 0;
  307. }