You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gemm.c 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. #ifdef FUNCTION_PROFILE
  42. #include "functable.h"
  43. #endif
  44. #ifndef COMPLEX
  45. #define SMP_THRESHOLD_MIN 65536.0
  46. #ifdef XDOUBLE
  47. #define ERROR_NAME "QGEMM "
  48. #elif defined(DOUBLE)
  49. #define ERROR_NAME "DGEMM "
  50. #elif defined(BFLOAT16)
  51. #define ERROR_NAME "SBGEMM "
  52. #else
  53. #define ERROR_NAME "SGEMM "
  54. #endif
  55. #else
  56. #define SMP_THRESHOLD_MIN 8192.0
  57. #ifndef GEMM3M
  58. #ifdef XDOUBLE
  59. #define ERROR_NAME "XGEMM "
  60. #elif defined(DOUBLE)
  61. #define ERROR_NAME "ZGEMM "
  62. #else
  63. #define ERROR_NAME "CGEMM "
  64. #endif
  65. #else
  66. #ifdef XDOUBLE
  67. #define ERROR_NAME "XGEMM3M "
  68. #elif defined(DOUBLE)
  69. #define ERROR_NAME "ZGEMM3M "
  70. #else
  71. #define ERROR_NAME "CGEMM3M "
  72. #endif
  73. #endif
  74. #endif
  75. #ifndef GEMM_MULTITHREAD_THRESHOLD
  76. #define GEMM_MULTITHREAD_THRESHOLD 4
  77. #endif
  78. static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, IFLOAT *, IFLOAT *, BLASLONG) = {
  79. #ifndef GEMM3M
  80. GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN,
  81. GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT,
  82. GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR,
  83. GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC,
  84. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  85. GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN,
  86. GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT,
  87. GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR,
  88. GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC,
  89. #endif
  90. #else
  91. GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN,
  92. GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT,
  93. GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR,
  94. GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC,
  95. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  96. GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN,
  97. GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT,
  98. GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR,
  99. GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC,
  100. #endif
  101. #endif
  102. };
  103. #ifdef SMALL_MATRIX_OPT
  104. #ifndef DYNAMIC_ARCH
  105. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(table[idx]))
  106. #else
  107. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(*(uintptr_t *)((char *)gotoblas + (size_t)(table[idx]))))
  108. #endif
  109. #ifndef COMPLEX
  110. static size_t gemm_small_kernel[] = {
  111. #ifndef GEMM3M
  112. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, 0, 0,
  113. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, 0, 0,
  114. #endif
  115. };
  116. static size_t gemm_small_kernel_b0[] = {
  117. #ifndef GEMM3M
  118. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, 0, 0,
  119. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, 0, 0,
  120. #endif
  121. };
  122. #define GEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel_b0, (idx))
  123. #define GEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT ,FLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel, (idx))
  124. #else
  125. static size_t zgemm_small_kernel[] = {
  126. #ifndef GEMM3M
  127. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, GEMM_SMALL_KERNEL_RN, GEMM_SMALL_KERNEL_CN,
  128. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, GEMM_SMALL_KERNEL_RT, GEMM_SMALL_KERNEL_CT,
  129. GEMM_SMALL_KERNEL_NR, GEMM_SMALL_KERNEL_TR, GEMM_SMALL_KERNEL_RR, GEMM_SMALL_KERNEL_CR,
  130. GEMM_SMALL_KERNEL_NC, GEMM_SMALL_KERNEL_TC, GEMM_SMALL_KERNEL_RC, GEMM_SMALL_KERNEL_CC,
  131. #endif
  132. };
  133. static size_t zgemm_small_kernel_b0[] = {
  134. #ifndef GEMM3M
  135. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, GEMM_SMALL_KERNEL_B0_RN, GEMM_SMALL_KERNEL_B0_CN,
  136. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, GEMM_SMALL_KERNEL_B0_RT, GEMM_SMALL_KERNEL_B0_CT,
  137. GEMM_SMALL_KERNEL_B0_NR, GEMM_SMALL_KERNEL_B0_TR, GEMM_SMALL_KERNEL_B0_RR, GEMM_SMALL_KERNEL_B0_CR,
  138. GEMM_SMALL_KERNEL_B0_NC, GEMM_SMALL_KERNEL_B0_TC, GEMM_SMALL_KERNEL_B0_RC, GEMM_SMALL_KERNEL_B0_CC,
  139. #endif
  140. };
  141. #define ZGEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel, (idx))
  142. #define ZGEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel_b0, (idx))
  143. #endif
  144. #endif
  145. #ifndef CBLAS
  146. void NAME(char *TRANSA, char *TRANSB,
  147. blasint *M, blasint *N, blasint *K,
  148. FLOAT *alpha,
  149. IFLOAT *a, blasint *ldA,
  150. IFLOAT *b, blasint *ldB,
  151. FLOAT *beta,
  152. FLOAT *c, blasint *ldC){
  153. blas_arg_t args;
  154. int transa, transb, nrowa, nrowb;
  155. blasint info;
  156. char transA, transB;
  157. IFLOAT *buffer;
  158. IFLOAT *sa, *sb;
  159. #ifdef SMP
  160. double MNK;
  161. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  162. #ifndef COMPLEX
  163. #ifdef XDOUBLE
  164. int mode = BLAS_XDOUBLE | BLAS_REAL;
  165. #elif defined(DOUBLE)
  166. int mode = BLAS_DOUBLE | BLAS_REAL;
  167. #else
  168. int mode = BLAS_SINGLE | BLAS_REAL;
  169. #endif
  170. #else
  171. #ifdef XDOUBLE
  172. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  173. #elif defined(DOUBLE)
  174. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  175. #else
  176. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  177. #endif
  178. #endif
  179. #endif
  180. #endif
  181. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  182. int nodes;
  183. #endif
  184. PRINT_DEBUG_NAME;
  185. args.m = *M;
  186. args.n = *N;
  187. args.k = *K;
  188. args.a = (void *)a;
  189. args.b = (void *)b;
  190. args.c = (void *)c;
  191. args.lda = *ldA;
  192. args.ldb = *ldB;
  193. args.ldc = *ldC;
  194. args.alpha = (void *)alpha;
  195. args.beta = (void *)beta;
  196. transA = *TRANSA;
  197. transB = *TRANSB;
  198. TOUPPER(transA);
  199. TOUPPER(transB);
  200. transa = -1;
  201. transb = -1;
  202. if (transA == 'N') transa = 0;
  203. if (transA == 'T') transa = 1;
  204. #ifndef COMPLEX
  205. if (transA == 'R') transa = 0;
  206. if (transA == 'C') transa = 1;
  207. #else
  208. if (transA == 'R') transa = 2;
  209. if (transA == 'C') transa = 3;
  210. #endif
  211. if (transB == 'N') transb = 0;
  212. if (transB == 'T') transb = 1;
  213. #ifndef COMPLEX
  214. if (transB == 'R') transb = 0;
  215. if (transB == 'C') transb = 1;
  216. #else
  217. if (transB == 'R') transb = 2;
  218. if (transB == 'C') transb = 3;
  219. #endif
  220. nrowa = args.m;
  221. if (transa & 1) nrowa = args.k;
  222. nrowb = args.k;
  223. if (transb & 1) nrowb = args.n;
  224. info = 0;
  225. if (args.ldc < args.m) info = 13;
  226. if (args.ldb < nrowb) info = 10;
  227. if (args.lda < nrowa) info = 8;
  228. if (args.k < 0) info = 5;
  229. if (args.n < 0) info = 4;
  230. if (args.m < 0) info = 3;
  231. if (transb < 0) info = 2;
  232. if (transa < 0) info = 1;
  233. if (info){
  234. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  235. return;
  236. }
  237. #else
  238. void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB,
  239. blasint m, blasint n, blasint k,
  240. #ifndef COMPLEX
  241. FLOAT alpha,
  242. FLOAT *a, blasint lda,
  243. FLOAT *b, blasint ldb,
  244. FLOAT beta,
  245. FLOAT *c, blasint ldc) {
  246. #else
  247. void *valpha,
  248. void *va, blasint lda,
  249. void *vb, blasint ldb,
  250. void *vbeta,
  251. void *vc, blasint ldc) {
  252. FLOAT *alpha = (FLOAT*) valpha;
  253. FLOAT *beta = (FLOAT*) vbeta;
  254. FLOAT *a = (FLOAT*) va;
  255. FLOAT *b = (FLOAT*) vb;
  256. FLOAT *c = (FLOAT*) vc;
  257. #endif
  258. blas_arg_t args;
  259. int transa, transb;
  260. blasint nrowa, nrowb, info;
  261. XFLOAT *buffer;
  262. XFLOAT *sa, *sb;
  263. #ifdef SMP
  264. double MNK;
  265. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  266. #ifndef COMPLEX
  267. #ifdef XDOUBLE
  268. int mode = BLAS_XDOUBLE | BLAS_REAL;
  269. #elif defined(DOUBLE)
  270. int mode = BLAS_DOUBLE | BLAS_REAL;
  271. #else
  272. int mode = BLAS_SINGLE | BLAS_REAL;
  273. #endif
  274. #else
  275. #ifdef XDOUBLE
  276. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  277. #elif defined(DOUBLE)
  278. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  279. #else
  280. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  281. #endif
  282. #endif
  283. #endif
  284. #endif
  285. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  286. int nodes;
  287. #endif
  288. PRINT_DEBUG_CNAME;
  289. #if !defined(COMPLEX) && !defined(DOUBLE) && defined(USE_SGEMM_KERNEL_DIRECT)
  290. #ifdef DYNAMIC_ARCH
  291. if (support_avx512() )
  292. #endif
  293. if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && SGEMM_DIRECT_PERFORMANT(m,n,k)) {
  294. SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
  295. return;
  296. }
  297. #endif
  298. #ifndef COMPLEX
  299. args.alpha = (void *)&alpha;
  300. args.beta = (void *)&beta;
  301. #else
  302. args.alpha = (void *)alpha;
  303. args.beta = (void *)beta;
  304. #endif
  305. transa = -1;
  306. transb = -1;
  307. info = 0;
  308. if (order == CblasColMajor) {
  309. args.m = m;
  310. args.n = n;
  311. args.k = k;
  312. args.a = (void *)a;
  313. args.b = (void *)b;
  314. args.c = (void *)c;
  315. args.lda = lda;
  316. args.ldb = ldb;
  317. args.ldc = ldc;
  318. if (TransA == CblasNoTrans) transa = 0;
  319. if (TransA == CblasTrans) transa = 1;
  320. #ifndef COMPLEX
  321. if (TransA == CblasConjNoTrans) transa = 0;
  322. if (TransA == CblasConjTrans) transa = 1;
  323. #else
  324. if (TransA == CblasConjNoTrans) transa = 2;
  325. if (TransA == CblasConjTrans) transa = 3;
  326. #endif
  327. if (TransB == CblasNoTrans) transb = 0;
  328. if (TransB == CblasTrans) transb = 1;
  329. #ifndef COMPLEX
  330. if (TransB == CblasConjNoTrans) transb = 0;
  331. if (TransB == CblasConjTrans) transb = 1;
  332. #else
  333. if (TransB == CblasConjNoTrans) transb = 2;
  334. if (TransB == CblasConjTrans) transb = 3;
  335. #endif
  336. nrowa = args.m;
  337. if (transa & 1) nrowa = args.k;
  338. nrowb = args.k;
  339. if (transb & 1) nrowb = args.n;
  340. info = -1;
  341. if (args.ldc < args.m) info = 13;
  342. if (args.ldb < nrowb) info = 10;
  343. if (args.lda < nrowa) info = 8;
  344. if (args.k < 0) info = 5;
  345. if (args.n < 0) info = 4;
  346. if (args.m < 0) info = 3;
  347. if (transb < 0) info = 2;
  348. if (transa < 0) info = 1;
  349. }
  350. if (order == CblasRowMajor) {
  351. args.m = n;
  352. args.n = m;
  353. args.k = k;
  354. args.a = (void *)b;
  355. args.b = (void *)a;
  356. args.c = (void *)c;
  357. args.lda = ldb;
  358. args.ldb = lda;
  359. args.ldc = ldc;
  360. if (TransB == CblasNoTrans) transa = 0;
  361. if (TransB == CblasTrans) transa = 1;
  362. #ifndef COMPLEX
  363. if (TransB == CblasConjNoTrans) transa = 0;
  364. if (TransB == CblasConjTrans) transa = 1;
  365. #else
  366. if (TransB == CblasConjNoTrans) transa = 2;
  367. if (TransB == CblasConjTrans) transa = 3;
  368. #endif
  369. if (TransA == CblasNoTrans) transb = 0;
  370. if (TransA == CblasTrans) transb = 1;
  371. #ifndef COMPLEX
  372. if (TransA == CblasConjNoTrans) transb = 0;
  373. if (TransA == CblasConjTrans) transb = 1;
  374. #else
  375. if (TransA == CblasConjNoTrans) transb = 2;
  376. if (TransA == CblasConjTrans) transb = 3;
  377. #endif
  378. nrowa = args.m;
  379. if (transa & 1) nrowa = args.k;
  380. nrowb = args.k;
  381. if (transb & 1) nrowb = args.n;
  382. info = -1;
  383. if (args.ldc < args.m) info = 13;
  384. if (args.ldb < nrowb) info = 10;
  385. if (args.lda < nrowa) info = 8;
  386. if (args.k < 0) info = 5;
  387. if (args.n < 0) info = 4;
  388. if (args.m < 0) info = 3;
  389. if (transb < 0) info = 2;
  390. if (transa < 0) info = 1;
  391. }
  392. if (info >= 0) {
  393. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  394. return;
  395. }
  396. #endif
  397. if ((args.m == 0) || (args.n == 0)) return;
  398. #if 0
  399. fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n",
  400. args.m, args.n, args.k, args.lda, args.ldb, args.ldc);
  401. #endif
  402. IDEBUG_START;
  403. FUNCTION_PROFILE_START();
  404. #ifdef SMALL_MATRIX_OPT
  405. #if !defined(COMPLEX)
  406. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, *(FLOAT *)(args.alpha), *(FLOAT *)(args.beta))){
  407. if(*(FLOAT *)(args.beta) == 0.0){
  408. (GEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, args.c, args.ldc);
  409. }else{
  410. (GEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, *(FLOAT *)(args.beta), args.c, args.ldc);
  411. }
  412. return;
  413. }
  414. #else
  415. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, alpha[0], alpha[1], beta[0], beta[1])){
  416. if(beta[0] == 0.0 && beta[1] == 0.0){
  417. (ZGEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, args.c, args.ldc);
  418. }else{
  419. (ZGEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, beta[0], beta[1], args.c, args.ldc);
  420. }
  421. return;
  422. }
  423. #endif
  424. #endif
  425. buffer = (XFLOAT *)blas_memory_alloc(0);
  426. sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A);
  427. sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
  428. #ifdef SMP
  429. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  430. mode |= (transa << BLAS_TRANSA_SHIFT);
  431. mode |= (transb << BLAS_TRANSB_SHIFT);
  432. #endif
  433. MNK = (double) args.m * (double) args.n * (double) args.k;
  434. if ( MNK <= (SMP_THRESHOLD_MIN * (double) GEMM_MULTITHREAD_THRESHOLD) )
  435. args.nthreads = 1;
  436. else
  437. args.nthreads = num_cpu_avail(3);
  438. args.common = NULL;
  439. if (args.nthreads == 1) {
  440. #endif
  441. (gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  442. #ifdef SMP
  443. } else {
  444. #ifndef USE_SIMPLE_THREADED_LEVEL3
  445. #ifndef NO_AFFINITY
  446. nodes = get_num_nodes();
  447. if ((nodes > 1) && get_node_equal()) {
  448. args.nthreads /= nodes;
  449. gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes);
  450. } else {
  451. #endif
  452. (gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  453. #else
  454. GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads);
  455. #endif
  456. #ifndef USE_SIMPLE_THREADED_LEVEL3
  457. #ifndef NO_AFFINITY
  458. }
  459. #endif
  460. #endif
  461. #endif
  462. #ifdef SMP
  463. }
  464. #endif
  465. blas_memory_free(buffer);
  466. FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k);
  467. IDEBUG_END;
  468. return;
  469. }