You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpstrf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. *> \brief \b DPSTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPSTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpstrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpstrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpstrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * DOUBLE PRECISION TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  30. * INTEGER PIV( N )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DPSTRF computes the Cholesky factorization with complete
  40. *> pivoting of a real symmetric positive semidefinite matrix A.
  41. *>
  42. *> The factorization has the form
  43. *> P**T * A * P = U**T * U , if UPLO = 'U',
  44. *> P**T * A * P = L * L**T, if UPLO = 'L',
  45. *> where U is an upper triangular matrix and L is lower triangular, and
  46. *> P is stored as vector PIV.
  47. *>
  48. *> This algorithm does not attempt to check that A is positive
  49. *> semidefinite. This version of the algorithm calls level 3 BLAS.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> Specifies whether the upper or lower triangular part of the
  59. *> symmetric matrix A is stored.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] N
  65. *> \verbatim
  66. *> N is INTEGER
  67. *> The order of the matrix A. N >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in,out] A
  71. *> \verbatim
  72. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  73. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  74. *> n by n upper triangular part of A contains the upper
  75. *> triangular part of the matrix A, and the strictly lower
  76. *> triangular part of A is not referenced. If UPLO = 'L', the
  77. *> leading n by n lower triangular part of A contains the lower
  78. *> triangular part of the matrix A, and the strictly upper
  79. *> triangular part of A is not referenced.
  80. *>
  81. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  82. *> factorization as above.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDA
  86. *> \verbatim
  87. *> LDA is INTEGER
  88. *> The leading dimension of the array A. LDA >= max(1,N).
  89. *> \endverbatim
  90. *>
  91. *> \param[out] PIV
  92. *> \verbatim
  93. *> PIV is INTEGER array, dimension (N)
  94. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  95. *> \endverbatim
  96. *>
  97. *> \param[out] RANK
  98. *> \verbatim
  99. *> RANK is INTEGER
  100. *> The rank of A given by the number of steps the algorithm
  101. *> completed.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] TOL
  105. *> \verbatim
  106. *> TOL is DOUBLE PRECISION
  107. *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
  108. *> will be used. The algorithm terminates at the (K-1)st step
  109. *> if the pivot <= TOL.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] WORK
  113. *> \verbatim
  114. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  115. *> Work space.
  116. *> \endverbatim
  117. *>
  118. *> \param[out] INFO
  119. *> \verbatim
  120. *> INFO is INTEGER
  121. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  122. *> = 0: algorithm completed successfully, and
  123. *> > 0: the matrix A is either rank deficient with computed rank
  124. *> as returned in RANK, or is indefinite. See Section 7 of
  125. *> LAPACK Working Note #161 for further information.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date November 2011
  137. *
  138. *> \ingroup doubleOTHERcomputational
  139. *
  140. * =====================================================================
  141. SUBROUTINE DPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142. *
  143. * -- LAPACK computational routine (version 3.4.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * November 2011
  147. *
  148. * .. Scalar Arguments ..
  149. DOUBLE PRECISION TOL
  150. INTEGER INFO, LDA, N, RANK
  151. CHARACTER UPLO
  152. * ..
  153. * .. Array Arguments ..
  154. DOUBLE PRECISION A( LDA, * ), WORK( 2*N )
  155. INTEGER PIV( N )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. DOUBLE PRECISION ONE, ZERO
  162. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163. * ..
  164. * .. Local Scalars ..
  165. DOUBLE PRECISION AJJ, DSTOP, DTEMP
  166. INTEGER I, ITEMP, J, JB, K, NB, PVT
  167. LOGICAL UPPER
  168. * ..
  169. * .. External Functions ..
  170. DOUBLE PRECISION DLAMCH
  171. INTEGER ILAENV
  172. LOGICAL LSAME, DISNAN
  173. EXTERNAL DLAMCH, ILAENV, LSAME, DISNAN
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL DGEMV, DPSTF2, DSCAL, DSWAP, DSYRK, XERBLA
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC MAX, MIN, SQRT, MAXLOC
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. * Test the input parameters.
  184. *
  185. INFO = 0
  186. UPPER = LSAME( UPLO, 'U' )
  187. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  188. INFO = -1
  189. ELSE IF( N.LT.0 ) THEN
  190. INFO = -2
  191. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192. INFO = -4
  193. END IF
  194. IF( INFO.NE.0 ) THEN
  195. CALL XERBLA( 'DPSTRF', -INFO )
  196. RETURN
  197. END IF
  198. *
  199. * Quick return if possible
  200. *
  201. IF( N.EQ.0 )
  202. $ RETURN
  203. *
  204. * Get block size
  205. *
  206. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  207. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  208. *
  209. * Use unblocked code
  210. *
  211. CALL DPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
  212. $ INFO )
  213. GO TO 200
  214. *
  215. ELSE
  216. *
  217. * Initialize PIV
  218. *
  219. DO 100 I = 1, N
  220. PIV( I ) = I
  221. 100 CONTINUE
  222. *
  223. * Compute stopping value
  224. *
  225. PVT = 1
  226. AJJ = A( PVT, PVT )
  227. DO I = 2, N
  228. IF( A( I, I ).GT.AJJ ) THEN
  229. PVT = I
  230. AJJ = A( PVT, PVT )
  231. END IF
  232. END DO
  233. IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN
  234. RANK = 0
  235. INFO = 1
  236. GO TO 200
  237. END IF
  238. *
  239. * Compute stopping value if not supplied
  240. *
  241. IF( TOL.LT.ZERO ) THEN
  242. DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  243. ELSE
  244. DSTOP = TOL
  245. END IF
  246. *
  247. *
  248. IF( UPPER ) THEN
  249. *
  250. * Compute the Cholesky factorization P**T * A * P = U**T * U
  251. *
  252. DO 140 K = 1, N, NB
  253. *
  254. * Account for last block not being NB wide
  255. *
  256. JB = MIN( NB, N-K+1 )
  257. *
  258. * Set relevant part of first half of WORK to zero,
  259. * holds dot products
  260. *
  261. DO 110 I = K, N
  262. WORK( I ) = 0
  263. 110 CONTINUE
  264. *
  265. DO 130 J = K, K + JB - 1
  266. *
  267. * Find pivot, test for exit, else swap rows and columns
  268. * Update dot products, compute possible pivots which are
  269. * stored in the second half of WORK
  270. *
  271. DO 120 I = J, N
  272. *
  273. IF( J.GT.K ) THEN
  274. WORK( I ) = WORK( I ) + A( J-1, I )**2
  275. END IF
  276. WORK( N+I ) = A( I, I ) - WORK( I )
  277. *
  278. 120 CONTINUE
  279. *
  280. IF( J.GT.1 ) THEN
  281. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  282. PVT = ITEMP + J - 1
  283. AJJ = WORK( N+PVT )
  284. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  285. A( J, J ) = AJJ
  286. GO TO 190
  287. END IF
  288. END IF
  289. *
  290. IF( J.NE.PVT ) THEN
  291. *
  292. * Pivot OK, so can now swap pivot rows and columns
  293. *
  294. A( PVT, PVT ) = A( J, J )
  295. CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  296. IF( PVT.LT.N )
  297. $ CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA,
  298. $ A( PVT, PVT+1 ), LDA )
  299. CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA,
  300. $ A( J+1, PVT ), 1 )
  301. *
  302. * Swap dot products and PIV
  303. *
  304. DTEMP = WORK( J )
  305. WORK( J ) = WORK( PVT )
  306. WORK( PVT ) = DTEMP
  307. ITEMP = PIV( PVT )
  308. PIV( PVT ) = PIV( J )
  309. PIV( J ) = ITEMP
  310. END IF
  311. *
  312. AJJ = SQRT( AJJ )
  313. A( J, J ) = AJJ
  314. *
  315. * Compute elements J+1:N of row J.
  316. *
  317. IF( J.LT.N ) THEN
  318. CALL DGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
  319. $ LDA, A( K, J ), 1, ONE, A( J, J+1 ),
  320. $ LDA )
  321. CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  322. END IF
  323. *
  324. 130 CONTINUE
  325. *
  326. * Update trailing matrix, J already incremented
  327. *
  328. IF( K+JB.LE.N ) THEN
  329. CALL DSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
  330. $ A( K, J ), LDA, ONE, A( J, J ), LDA )
  331. END IF
  332. *
  333. 140 CONTINUE
  334. *
  335. ELSE
  336. *
  337. * Compute the Cholesky factorization P**T * A * P = L * L**T
  338. *
  339. DO 180 K = 1, N, NB
  340. *
  341. * Account for last block not being NB wide
  342. *
  343. JB = MIN( NB, N-K+1 )
  344. *
  345. * Set relevant part of first half of WORK to zero,
  346. * holds dot products
  347. *
  348. DO 150 I = K, N
  349. WORK( I ) = 0
  350. 150 CONTINUE
  351. *
  352. DO 170 J = K, K + JB - 1
  353. *
  354. * Find pivot, test for exit, else swap rows and columns
  355. * Update dot products, compute possible pivots which are
  356. * stored in the second half of WORK
  357. *
  358. DO 160 I = J, N
  359. *
  360. IF( J.GT.K ) THEN
  361. WORK( I ) = WORK( I ) + A( I, J-1 )**2
  362. END IF
  363. WORK( N+I ) = A( I, I ) - WORK( I )
  364. *
  365. 160 CONTINUE
  366. *
  367. IF( J.GT.1 ) THEN
  368. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  369. PVT = ITEMP + J - 1
  370. AJJ = WORK( N+PVT )
  371. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  372. A( J, J ) = AJJ
  373. GO TO 190
  374. END IF
  375. END IF
  376. *
  377. IF( J.NE.PVT ) THEN
  378. *
  379. * Pivot OK, so can now swap pivot rows and columns
  380. *
  381. A( PVT, PVT ) = A( J, J )
  382. CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  383. IF( PVT.LT.N )
  384. $ CALL DSWAP( N-PVT, A( PVT+1, J ), 1,
  385. $ A( PVT+1, PVT ), 1 )
  386. CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
  387. $ LDA )
  388. *
  389. * Swap dot products and PIV
  390. *
  391. DTEMP = WORK( J )
  392. WORK( J ) = WORK( PVT )
  393. WORK( PVT ) = DTEMP
  394. ITEMP = PIV( PVT )
  395. PIV( PVT ) = PIV( J )
  396. PIV( J ) = ITEMP
  397. END IF
  398. *
  399. AJJ = SQRT( AJJ )
  400. A( J, J ) = AJJ
  401. *
  402. * Compute elements J+1:N of column J.
  403. *
  404. IF( J.LT.N ) THEN
  405. CALL DGEMV( 'No Trans', N-J, J-K, -ONE,
  406. $ A( J+1, K ), LDA, A( J, K ), LDA, ONE,
  407. $ A( J+1, J ), 1 )
  408. CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  409. END IF
  410. *
  411. 170 CONTINUE
  412. *
  413. * Update trailing matrix, J already incremented
  414. *
  415. IF( K+JB.LE.N ) THEN
  416. CALL DSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
  417. $ A( J, K ), LDA, ONE, A( J, J ), LDA )
  418. END IF
  419. *
  420. 180 CONTINUE
  421. *
  422. END IF
  423. END IF
  424. *
  425. * Ran to completion, A has full rank
  426. *
  427. RANK = N
  428. *
  429. GO TO 200
  430. 190 CONTINUE
  431. *
  432. * Rank is the number of steps completed. Set INFO = 1 to signal
  433. * that the factorization cannot be used to solve a system.
  434. *
  435. RANK = J - 1
  436. INFO = 1
  437. *
  438. 200 CONTINUE
  439. RETURN
  440. *
  441. * End of DPSTRF
  442. *
  443. END