You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlanhe.f 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. *> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANHE + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANHE returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex hermitian matrix A.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANHE
  44. *> \verbatim
  45. *>
  46. *> ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANHE as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> hermitian matrix A is to be referenced.
  75. *> = 'U': Upper triangular part of A is referenced
  76. *> = 'L': Lower triangular part of A is referenced
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, ZLANHE is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] A
  87. *> \verbatim
  88. *> A is COMPLEX*16 array, dimension (LDA,N)
  89. *> The hermitian matrix A. If UPLO = 'U', the leading n by n
  90. *> upper triangular part of A contains the upper triangular part
  91. *> of the matrix A, and the strictly lower triangular part of A
  92. *> is not referenced. If UPLO = 'L', the leading n by n lower
  93. *> triangular part of A contains the lower triangular part of
  94. *> the matrix A, and the strictly upper triangular part of A is
  95. *> not referenced. Note that the imaginary parts of the diagonal
  96. *> elements need not be set and are assumed to be zero.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> The leading dimension of the array A. LDA >= max(N,1).
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  109. *> WORK is not referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date December 2016
  121. *
  122. *> \ingroup complex16HEauxiliary
  123. *
  124. * =====================================================================
  125. DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
  126. *
  127. * -- LAPACK auxiliary routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. * .. Scalar Arguments ..
  133. CHARACTER NORM, UPLO
  134. INTEGER LDA, N
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION WORK( * )
  138. COMPLEX*16 A( LDA, * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ONE, ZERO
  145. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  146. * ..
  147. * .. Local Scalars ..
  148. INTEGER I, J
  149. DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
  150. * ..
  151. * .. External Functions ..
  152. LOGICAL LSAME, DISNAN
  153. EXTERNAL LSAME, DISNAN
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL ZLASSQ
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC ABS, DBLE, SQRT
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. IF( N.EQ.0 ) THEN
  164. VALUE = ZERO
  165. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  166. *
  167. * Find max(abs(A(i,j))).
  168. *
  169. VALUE = ZERO
  170. IF( LSAME( UPLO, 'U' ) ) THEN
  171. DO 20 J = 1, N
  172. DO 10 I = 1, J - 1
  173. SUM = ABS( A( I, J ) )
  174. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  175. 10 CONTINUE
  176. SUM = ABS( DBLE( A( J, J ) ) )
  177. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  178. 20 CONTINUE
  179. ELSE
  180. DO 40 J = 1, N
  181. SUM = ABS( DBLE( A( J, J ) ) )
  182. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  183. DO 30 I = J + 1, N
  184. SUM = ABS( A( I, J ) )
  185. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  186. 30 CONTINUE
  187. 40 CONTINUE
  188. END IF
  189. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  190. $ ( NORM.EQ.'1' ) ) THEN
  191. *
  192. * Find normI(A) ( = norm1(A), since A is hermitian).
  193. *
  194. VALUE = ZERO
  195. IF( LSAME( UPLO, 'U' ) ) THEN
  196. DO 60 J = 1, N
  197. SUM = ZERO
  198. DO 50 I = 1, J - 1
  199. ABSA = ABS( A( I, J ) )
  200. SUM = SUM + ABSA
  201. WORK( I ) = WORK( I ) + ABSA
  202. 50 CONTINUE
  203. WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
  204. 60 CONTINUE
  205. DO 70 I = 1, N
  206. SUM = WORK( I )
  207. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  208. 70 CONTINUE
  209. ELSE
  210. DO 80 I = 1, N
  211. WORK( I ) = ZERO
  212. 80 CONTINUE
  213. DO 100 J = 1, N
  214. SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
  215. DO 90 I = J + 1, N
  216. ABSA = ABS( A( I, J ) )
  217. SUM = SUM + ABSA
  218. WORK( I ) = WORK( I ) + ABSA
  219. 90 CONTINUE
  220. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  221. 100 CONTINUE
  222. END IF
  223. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  224. *
  225. * Find normF(A).
  226. *
  227. SCALE = ZERO
  228. SUM = ONE
  229. IF( LSAME( UPLO, 'U' ) ) THEN
  230. DO 110 J = 2, N
  231. CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  232. 110 CONTINUE
  233. ELSE
  234. DO 120 J = 1, N - 1
  235. CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  236. 120 CONTINUE
  237. END IF
  238. SUM = 2*SUM
  239. DO 130 I = 1, N
  240. IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
  241. ABSA = ABS( DBLE( A( I, I ) ) )
  242. IF( SCALE.LT.ABSA ) THEN
  243. SUM = ONE + SUM*( SCALE / ABSA )**2
  244. SCALE = ABSA
  245. ELSE
  246. SUM = SUM + ( ABSA / SCALE )**2
  247. END IF
  248. END IF
  249. 130 CONTINUE
  250. VALUE = SCALE*SQRT( SUM )
  251. END IF
  252. *
  253. ZLANHE = VALUE
  254. RETURN
  255. *
  256. * End of ZLANHE
  257. *
  258. END