You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrs_aa.f 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. *> \brief \b SSYTRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * REAL A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SSYTRS_AA solves a system of linear equations A*X = B with a real
  40. *> symmetric matrix A using the factorization A = U*T*U**T or
  41. *> A = L*T*L**T computed by SSYTRF_AA.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the details of the factorization are stored
  51. *> as an upper or lower triangular matrix.
  52. *> = 'U': Upper triangular, form is A = U*T*U**T;
  53. *> = 'L': Lower triangular, form is A = L*T*L**T.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrix B. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is REAL array, dimension (LDA,N)
  72. *> Details of factors computed by SSYTRF_AA.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges as computed by SSYTRF_AA.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] B
  88. *> \verbatim
  89. *> B is REAL array, dimension (LDB,NRHS)
  90. *> On entry, the right hand side matrix B.
  91. *> On exit, the solution matrix X.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] WORK
  101. *> \verbatim
  102. *> WORK is DOUBLE array, dimension (MAX(1,LWORK))
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LWORK
  106. *> \verbatim
  107. *> LWORK is INTEGER, LWORK >= MAX(1,3*N-2).
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit
  113. *> < 0: if INFO = -i, the i-th argument had an illegal value
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date November 2017
  125. *
  126. *> \ingroup realSYcomputational
  127. *
  128. * =====================================================================
  129. SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  130. $ WORK, LWORK, INFO )
  131. *
  132. * -- LAPACK computational routine (version 3.8.0) --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. * November 2017
  136. *
  137. IMPLICIT NONE
  138. *
  139. * .. Scalar Arguments ..
  140. CHARACTER UPLO
  141. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  142. * ..
  143. * .. Array Arguments ..
  144. INTEGER IPIV( * )
  145. REAL A( LDA, * ), B( LDB, * ), WORK( * )
  146. * ..
  147. *
  148. * =====================================================================
  149. *
  150. REAL ONE
  151. PARAMETER ( ONE = 1.0E+0 )
  152. * ..
  153. * .. Local Scalars ..
  154. LOGICAL LQUERY, UPPER
  155. INTEGER K, KP, LWKOPT
  156. * ..
  157. * .. External Functions ..
  158. LOGICAL LSAME
  159. EXTERNAL LSAME
  160. * ..
  161. * .. External Subroutines ..
  162. EXTERNAL SGTSV, SSWAP, SLACPY, STRSM, XERBLA
  163. * ..
  164. * .. Intrinsic Functions ..
  165. INTRINSIC MAX
  166. * ..
  167. * .. Executable Statements ..
  168. *
  169. INFO = 0
  170. UPPER = LSAME( UPLO, 'U' )
  171. LQUERY = ( LWORK.EQ.-1 )
  172. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173. INFO = -1
  174. ELSE IF( N.LT.0 ) THEN
  175. INFO = -2
  176. ELSE IF( NRHS.LT.0 ) THEN
  177. INFO = -3
  178. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179. INFO = -5
  180. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  181. INFO = -8
  182. ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  183. INFO = -10
  184. END IF
  185. IF( INFO.NE.0 ) THEN
  186. CALL XERBLA( 'SSYTRS_AA', -INFO )
  187. RETURN
  188. ELSE IF( LQUERY ) THEN
  189. LWKOPT = (3*N-2)
  190. WORK( 1 ) = LWKOPT
  191. RETURN
  192. END IF
  193. *
  194. * Quick return if possible
  195. *
  196. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  197. $ RETURN
  198. *
  199. IF( UPPER ) THEN
  200. *
  201. * Solve A*X = B, where A = U*T*U**T.
  202. *
  203. * Pivot, P**T * B
  204. *
  205. K = 1
  206. DO WHILE ( K.LE.N )
  207. KP = IPIV( K )
  208. IF( KP.NE.K )
  209. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  210. K = K + 1
  211. END DO
  212. *
  213. * Compute (U \P**T * B) -> B [ (U \P**T * B) ]
  214. *
  215. CALL STRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
  216. $ B( 2, 1 ), LDB)
  217. *
  218. * Compute T \ B -> B [ T \ (U \P**T * B) ]
  219. *
  220. CALL SLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  221. IF( N.GT.1 ) THEN
  222. CALL SLACPY( 'F', 1, N-1, A(1, 2), LDA+1, WORK(1), 1)
  223. CALL SLACPY( 'F', 1, N-1, A(1, 2), LDA+1, WORK(2*N), 1)
  224. END IF
  225. CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  226. $ INFO)
  227. *
  228. *
  229. * Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ]
  230. *
  231. CALL STRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
  232. $ B(2, 1), LDB)
  233. *
  234. * Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ]
  235. *
  236. K = N
  237. DO WHILE ( K.GE.1 )
  238. KP = IPIV( K )
  239. IF( KP.NE.K )
  240. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  241. K = K - 1
  242. END DO
  243. *
  244. ELSE
  245. *
  246. * Solve A*X = B, where A = L*T*L**T.
  247. *
  248. * Pivot, P**T * B
  249. *
  250. K = 1
  251. DO WHILE ( K.LE.N )
  252. KP = IPIV( K )
  253. IF( KP.NE.K )
  254. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  255. K = K + 1
  256. END DO
  257. *
  258. * Compute (L \P**T * B) -> B [ (L \P**T * B) ]
  259. *
  260. CALL STRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1), LDA,
  261. $ B(2, 1), LDB)
  262. *
  263. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  264. *
  265. CALL SLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  266. IF( N.GT.1 ) THEN
  267. CALL SLACPY( 'F', 1, N-1, A(2, 1), LDA+1, WORK(1), 1)
  268. CALL SLACPY( 'F', 1, N-1, A(2, 1), LDA+1, WORK(2*N), 1)
  269. END IF
  270. CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  271. $ INFO)
  272. *
  273. * Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
  274. *
  275. CALL STRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
  276. $ B( 2, 1 ), LDB)
  277. *
  278. * Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
  279. *
  280. K = N
  281. DO WHILE ( K.GE.1 )
  282. KP = IPIV( K )
  283. IF( KP.NE.K )
  284. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  285. K = K - 1
  286. END DO
  287. *
  288. END IF
  289. *
  290. RETURN
  291. *
  292. * End of SSYTRS_AA
  293. *
  294. END