You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyrfs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. *> \brief \b SSYRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  22. * X, LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * ), IWORK( * )
  30. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  31. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SSYRFS improves the computed solution to a system of linear
  41. *> equations when the coefficient matrix is symmetric indefinite, and
  42. *> provides error bounds and backward error estimates for the solution.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> = 'U': Upper triangle of A is stored;
  52. *> = 'L': Lower triangle of A is stored.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NRHS
  62. *> \verbatim
  63. *> NRHS is INTEGER
  64. *> The number of right hand sides, i.e., the number of columns
  65. *> of the matrices B and X. NRHS >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] A
  69. *> \verbatim
  70. *> A is REAL array, dimension (LDA,N)
  71. *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
  72. *> upper triangular part of A contains the upper triangular part
  73. *> of the matrix A, and the strictly lower triangular part of A
  74. *> is not referenced. If UPLO = 'L', the leading N-by-N lower
  75. *> triangular part of A contains the lower triangular part of
  76. *> the matrix A, and the strictly upper triangular part of A is
  77. *> not referenced.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDA
  81. *> \verbatim
  82. *> LDA is INTEGER
  83. *> The leading dimension of the array A. LDA >= max(1,N).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] AF
  87. *> \verbatim
  88. *> AF is REAL array, dimension (LDAF,N)
  89. *> The factored form of the matrix A. AF contains the block
  90. *> diagonal matrix D and the multipliers used to obtain the
  91. *> factor U or L from the factorization A = U*D*U**T or
  92. *> A = L*D*L**T as computed by SSYTRF.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDAF
  96. *> \verbatim
  97. *> LDAF is INTEGER
  98. *> The leading dimension of the array AF. LDAF >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] IPIV
  102. *> \verbatim
  103. *> IPIV is INTEGER array, dimension (N)
  104. *> Details of the interchanges and the block structure of D
  105. *> as determined by SSYTRF.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] B
  109. *> \verbatim
  110. *> B is REAL array, dimension (LDB,NRHS)
  111. *> The right hand side matrix B.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDB
  115. *> \verbatim
  116. *> LDB is INTEGER
  117. *> The leading dimension of the array B. LDB >= max(1,N).
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X
  121. *> \verbatim
  122. *> X is REAL array, dimension (LDX,NRHS)
  123. *> On entry, the solution matrix X, as computed by SSYTRS.
  124. *> On exit, the improved solution matrix X.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDX
  128. *> \verbatim
  129. *> LDX is INTEGER
  130. *> The leading dimension of the array X. LDX >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[out] FERR
  134. *> \verbatim
  135. *> FERR is REAL array, dimension (NRHS)
  136. *> The estimated forward error bound for each solution vector
  137. *> X(j) (the j-th column of the solution matrix X).
  138. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  139. *> is an estimated upper bound for the magnitude of the largest
  140. *> element in (X(j) - XTRUE) divided by the magnitude of the
  141. *> largest element in X(j). The estimate is as reliable as
  142. *> the estimate for RCOND, and is almost always a slight
  143. *> overestimate of the true error.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] BERR
  147. *> \verbatim
  148. *> BERR is REAL array, dimension (NRHS)
  149. *> The componentwise relative backward error of each solution
  150. *> vector X(j) (i.e., the smallest relative change in
  151. *> any element of A or B that makes X(j) an exact solution).
  152. *> \endverbatim
  153. *>
  154. *> \param[out] WORK
  155. *> \verbatim
  156. *> WORK is REAL array, dimension (3*N)
  157. *> \endverbatim
  158. *>
  159. *> \param[out] IWORK
  160. *> \verbatim
  161. *> IWORK is INTEGER array, dimension (N)
  162. *> \endverbatim
  163. *>
  164. *> \param[out] INFO
  165. *> \verbatim
  166. *> INFO is INTEGER
  167. *> = 0: successful exit
  168. *> < 0: if INFO = -i, the i-th argument had an illegal value
  169. *> \endverbatim
  170. *
  171. *> \par Internal Parameters:
  172. * =========================
  173. *>
  174. *> \verbatim
  175. *> ITMAX is the maximum number of steps of iterative refinement.
  176. *> \endverbatim
  177. *
  178. * Authors:
  179. * ========
  180. *
  181. *> \author Univ. of Tennessee
  182. *> \author Univ. of California Berkeley
  183. *> \author Univ. of Colorado Denver
  184. *> \author NAG Ltd.
  185. *
  186. *> \date December 2016
  187. *
  188. *> \ingroup realSYcomputational
  189. *
  190. * =====================================================================
  191. SUBROUTINE SSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  192. $ X, LDX, FERR, BERR, WORK, IWORK, INFO )
  193. *
  194. * -- LAPACK computational routine (version 3.7.0) --
  195. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. * December 2016
  198. *
  199. * .. Scalar Arguments ..
  200. CHARACTER UPLO
  201. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  202. * ..
  203. * .. Array Arguments ..
  204. INTEGER IPIV( * ), IWORK( * )
  205. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  206. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  207. * ..
  208. *
  209. * =====================================================================
  210. *
  211. * .. Parameters ..
  212. INTEGER ITMAX
  213. PARAMETER ( ITMAX = 5 )
  214. REAL ZERO
  215. PARAMETER ( ZERO = 0.0E+0 )
  216. REAL ONE
  217. PARAMETER ( ONE = 1.0E+0 )
  218. REAL TWO
  219. PARAMETER ( TWO = 2.0E+0 )
  220. REAL THREE
  221. PARAMETER ( THREE = 3.0E+0 )
  222. * ..
  223. * .. Local Scalars ..
  224. LOGICAL UPPER
  225. INTEGER COUNT, I, J, K, KASE, NZ
  226. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  227. * ..
  228. * .. Local Arrays ..
  229. INTEGER ISAVE( 3 )
  230. * ..
  231. * .. External Subroutines ..
  232. EXTERNAL SAXPY, SCOPY, SLACN2, SSYMV, SSYTRS, XERBLA
  233. * ..
  234. * .. Intrinsic Functions ..
  235. INTRINSIC ABS, MAX
  236. * ..
  237. * .. External Functions ..
  238. LOGICAL LSAME
  239. REAL SLAMCH
  240. EXTERNAL LSAME, SLAMCH
  241. * ..
  242. * .. Executable Statements ..
  243. *
  244. * Test the input parameters.
  245. *
  246. INFO = 0
  247. UPPER = LSAME( UPLO, 'U' )
  248. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  249. INFO = -1
  250. ELSE IF( N.LT.0 ) THEN
  251. INFO = -2
  252. ELSE IF( NRHS.LT.0 ) THEN
  253. INFO = -3
  254. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  255. INFO = -5
  256. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  257. INFO = -7
  258. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  259. INFO = -10
  260. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  261. INFO = -12
  262. END IF
  263. IF( INFO.NE.0 ) THEN
  264. CALL XERBLA( 'SSYRFS', -INFO )
  265. RETURN
  266. END IF
  267. *
  268. * Quick return if possible
  269. *
  270. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  271. DO 10 J = 1, NRHS
  272. FERR( J ) = ZERO
  273. BERR( J ) = ZERO
  274. 10 CONTINUE
  275. RETURN
  276. END IF
  277. *
  278. * NZ = maximum number of nonzero elements in each row of A, plus 1
  279. *
  280. NZ = N + 1
  281. EPS = SLAMCH( 'Epsilon' )
  282. SAFMIN = SLAMCH( 'Safe minimum' )
  283. SAFE1 = NZ*SAFMIN
  284. SAFE2 = SAFE1 / EPS
  285. *
  286. * Do for each right hand side
  287. *
  288. DO 140 J = 1, NRHS
  289. *
  290. COUNT = 1
  291. LSTRES = THREE
  292. 20 CONTINUE
  293. *
  294. * Loop until stopping criterion is satisfied.
  295. *
  296. * Compute residual R = B - A * X
  297. *
  298. CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  299. CALL SSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
  300. $ WORK( N+1 ), 1 )
  301. *
  302. * Compute componentwise relative backward error from formula
  303. *
  304. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  305. *
  306. * where abs(Z) is the componentwise absolute value of the matrix
  307. * or vector Z. If the i-th component of the denominator is less
  308. * than SAFE2, then SAFE1 is added to the i-th components of the
  309. * numerator and denominator before dividing.
  310. *
  311. DO 30 I = 1, N
  312. WORK( I ) = ABS( B( I, J ) )
  313. 30 CONTINUE
  314. *
  315. * Compute abs(A)*abs(X) + abs(B).
  316. *
  317. IF( UPPER ) THEN
  318. DO 50 K = 1, N
  319. S = ZERO
  320. XK = ABS( X( K, J ) )
  321. DO 40 I = 1, K - 1
  322. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  323. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  324. 40 CONTINUE
  325. WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S
  326. 50 CONTINUE
  327. ELSE
  328. DO 70 K = 1, N
  329. S = ZERO
  330. XK = ABS( X( K, J ) )
  331. WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK
  332. DO 60 I = K + 1, N
  333. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  334. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  335. 60 CONTINUE
  336. WORK( K ) = WORK( K ) + S
  337. 70 CONTINUE
  338. END IF
  339. S = ZERO
  340. DO 80 I = 1, N
  341. IF( WORK( I ).GT.SAFE2 ) THEN
  342. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  343. ELSE
  344. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  345. $ ( WORK( I )+SAFE1 ) )
  346. END IF
  347. 80 CONTINUE
  348. BERR( J ) = S
  349. *
  350. * Test stopping criterion. Continue iterating if
  351. * 1) The residual BERR(J) is larger than machine epsilon, and
  352. * 2) BERR(J) decreased by at least a factor of 2 during the
  353. * last iteration, and
  354. * 3) At most ITMAX iterations tried.
  355. *
  356. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  357. $ COUNT.LE.ITMAX ) THEN
  358. *
  359. * Update solution and try again.
  360. *
  361. CALL SSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  362. $ INFO )
  363. CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  364. LSTRES = BERR( J )
  365. COUNT = COUNT + 1
  366. GO TO 20
  367. END IF
  368. *
  369. * Bound error from formula
  370. *
  371. * norm(X - XTRUE) / norm(X) .le. FERR =
  372. * norm( abs(inv(A))*
  373. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  374. *
  375. * where
  376. * norm(Z) is the magnitude of the largest component of Z
  377. * inv(A) is the inverse of A
  378. * abs(Z) is the componentwise absolute value of the matrix or
  379. * vector Z
  380. * NZ is the maximum number of nonzeros in any row of A, plus 1
  381. * EPS is machine epsilon
  382. *
  383. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  384. * is incremented by SAFE1 if the i-th component of
  385. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  386. *
  387. * Use SLACN2 to estimate the infinity-norm of the matrix
  388. * inv(A) * diag(W),
  389. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  390. *
  391. DO 90 I = 1, N
  392. IF( WORK( I ).GT.SAFE2 ) THEN
  393. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  394. ELSE
  395. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  396. END IF
  397. 90 CONTINUE
  398. *
  399. KASE = 0
  400. 100 CONTINUE
  401. CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  402. $ KASE, ISAVE )
  403. IF( KASE.NE.0 ) THEN
  404. IF( KASE.EQ.1 ) THEN
  405. *
  406. * Multiply by diag(W)*inv(A**T).
  407. *
  408. CALL SSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  409. $ INFO )
  410. DO 110 I = 1, N
  411. WORK( N+I ) = WORK( I )*WORK( N+I )
  412. 110 CONTINUE
  413. ELSE IF( KASE.EQ.2 ) THEN
  414. *
  415. * Multiply by inv(A)*diag(W).
  416. *
  417. DO 120 I = 1, N
  418. WORK( N+I ) = WORK( I )*WORK( N+I )
  419. 120 CONTINUE
  420. CALL SSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  421. $ INFO )
  422. END IF
  423. GO TO 100
  424. END IF
  425. *
  426. * Normalize error.
  427. *
  428. LSTRES = ZERO
  429. DO 130 I = 1, N
  430. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  431. 130 CONTINUE
  432. IF( LSTRES.NE.ZERO )
  433. $ FERR( J ) = FERR( J ) / LSTRES
  434. *
  435. 140 CONTINUE
  436. *
  437. RETURN
  438. *
  439. * End of SSYRFS
  440. *
  441. END