You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssptrf.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. *> \brief \b SSPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSPTRF computes the factorization of a real symmetric matrix A stored
  39. *> in packed format using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is symmetric and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is REAL array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the symmetric matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date December 2016
  111. *
  112. *> \ingroup realOTHERcomputational
  113. *
  114. *> \par Further Details:
  115. * =====================
  116. *>
  117. *> \verbatim
  118. *>
  119. *> 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
  120. *> Company
  121. *>
  122. *> If UPLO = 'U', then A = U*D*U**T, where
  123. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  124. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  125. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  126. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  127. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  128. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  129. *>
  130. *> ( I v 0 ) k-s
  131. *> U(k) = ( 0 I 0 ) s
  132. *> ( 0 0 I ) n-k
  133. *> k-s s n-k
  134. *>
  135. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  136. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  137. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  138. *>
  139. *> If UPLO = 'L', then A = L*D*L**T, where
  140. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  141. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  142. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  143. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  144. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  145. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  146. *>
  147. *> ( I 0 0 ) k-1
  148. *> L(k) = ( 0 I 0 ) s
  149. *> ( 0 v I ) n-k-s+1
  150. *> k-1 s n-k-s+1
  151. *>
  152. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  153. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  154. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  155. *> \endverbatim
  156. *>
  157. * =====================================================================
  158. SUBROUTINE SSPTRF( UPLO, N, AP, IPIV, INFO )
  159. *
  160. * -- LAPACK computational routine (version 3.7.0) --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. * December 2016
  164. *
  165. * .. Scalar Arguments ..
  166. CHARACTER UPLO
  167. INTEGER INFO, N
  168. * ..
  169. * .. Array Arguments ..
  170. INTEGER IPIV( * )
  171. REAL AP( * )
  172. * ..
  173. *
  174. * =====================================================================
  175. *
  176. * .. Parameters ..
  177. REAL ZERO, ONE
  178. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  179. REAL EIGHT, SEVTEN
  180. PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
  181. * ..
  182. * .. Local Scalars ..
  183. LOGICAL UPPER
  184. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  185. $ KSTEP, KX, NPP
  186. REAL ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  187. $ ROWMAX, T, WK, WKM1, WKP1
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. INTEGER ISAMAX
  192. EXTERNAL LSAME, ISAMAX
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL SSCAL, SSPR, SSWAP, XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC ABS, MAX, SQRT
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. * Test the input parameters.
  203. *
  204. INFO = 0
  205. UPPER = LSAME( UPLO, 'U' )
  206. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  207. INFO = -1
  208. ELSE IF( N.LT.0 ) THEN
  209. INFO = -2
  210. END IF
  211. IF( INFO.NE.0 ) THEN
  212. CALL XERBLA( 'SSPTRF', -INFO )
  213. RETURN
  214. END IF
  215. *
  216. * Initialize ALPHA for use in choosing pivot block size.
  217. *
  218. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  219. *
  220. IF( UPPER ) THEN
  221. *
  222. * Factorize A as U*D*U**T using the upper triangle of A
  223. *
  224. * K is the main loop index, decreasing from N to 1 in steps of
  225. * 1 or 2
  226. *
  227. K = N
  228. KC = ( N-1 )*N / 2 + 1
  229. 10 CONTINUE
  230. KNC = KC
  231. *
  232. * If K < 1, exit from loop
  233. *
  234. IF( K.LT.1 )
  235. $ GO TO 110
  236. KSTEP = 1
  237. *
  238. * Determine rows and columns to be interchanged and whether
  239. * a 1-by-1 or 2-by-2 pivot block will be used
  240. *
  241. ABSAKK = ABS( AP( KC+K-1 ) )
  242. *
  243. * IMAX is the row-index of the largest off-diagonal element in
  244. * column K, and COLMAX is its absolute value
  245. *
  246. IF( K.GT.1 ) THEN
  247. IMAX = ISAMAX( K-1, AP( KC ), 1 )
  248. COLMAX = ABS( AP( KC+IMAX-1 ) )
  249. ELSE
  250. COLMAX = ZERO
  251. END IF
  252. *
  253. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  254. *
  255. * Column K is zero: set INFO and continue
  256. *
  257. IF( INFO.EQ.0 )
  258. $ INFO = K
  259. KP = K
  260. ELSE
  261. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  262. *
  263. * no interchange, use 1-by-1 pivot block
  264. *
  265. KP = K
  266. ELSE
  267. *
  268. ROWMAX = ZERO
  269. JMAX = IMAX
  270. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  271. DO 20 J = IMAX + 1, K
  272. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  273. ROWMAX = ABS( AP( KX ) )
  274. JMAX = J
  275. END IF
  276. KX = KX + J
  277. 20 CONTINUE
  278. KPC = ( IMAX-1 )*IMAX / 2 + 1
  279. IF( IMAX.GT.1 ) THEN
  280. JMAX = ISAMAX( IMAX-1, AP( KPC ), 1 )
  281. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  282. END IF
  283. *
  284. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  285. *
  286. * no interchange, use 1-by-1 pivot block
  287. *
  288. KP = K
  289. ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  290. *
  291. * interchange rows and columns K and IMAX, use 1-by-1
  292. * pivot block
  293. *
  294. KP = IMAX
  295. ELSE
  296. *
  297. * interchange rows and columns K-1 and IMAX, use 2-by-2
  298. * pivot block
  299. *
  300. KP = IMAX
  301. KSTEP = 2
  302. END IF
  303. END IF
  304. *
  305. KK = K - KSTEP + 1
  306. IF( KSTEP.EQ.2 )
  307. $ KNC = KNC - K + 1
  308. IF( KP.NE.KK ) THEN
  309. *
  310. * Interchange rows and columns KK and KP in the leading
  311. * submatrix A(1:k,1:k)
  312. *
  313. CALL SSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  314. KX = KPC + KP - 1
  315. DO 30 J = KP + 1, KK - 1
  316. KX = KX + J - 1
  317. T = AP( KNC+J-1 )
  318. AP( KNC+J-1 ) = AP( KX )
  319. AP( KX ) = T
  320. 30 CONTINUE
  321. T = AP( KNC+KK-1 )
  322. AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  323. AP( KPC+KP-1 ) = T
  324. IF( KSTEP.EQ.2 ) THEN
  325. T = AP( KC+K-2 )
  326. AP( KC+K-2 ) = AP( KC+KP-1 )
  327. AP( KC+KP-1 ) = T
  328. END IF
  329. END IF
  330. *
  331. * Update the leading submatrix
  332. *
  333. IF( KSTEP.EQ.1 ) THEN
  334. *
  335. * 1-by-1 pivot block D(k): column k now holds
  336. *
  337. * W(k) = U(k)*D(k)
  338. *
  339. * where U(k) is the k-th column of U
  340. *
  341. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  342. *
  343. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  344. *
  345. R1 = ONE / AP( KC+K-1 )
  346. CALL SSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  347. *
  348. * Store U(k) in column k
  349. *
  350. CALL SSCAL( K-1, R1, AP( KC ), 1 )
  351. ELSE
  352. *
  353. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  354. *
  355. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  356. *
  357. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  358. * of U
  359. *
  360. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  361. *
  362. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  363. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  364. *
  365. IF( K.GT.2 ) THEN
  366. *
  367. D12 = AP( K-1+( K-1 )*K / 2 )
  368. D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  369. D11 = AP( K+( K-1 )*K / 2 ) / D12
  370. T = ONE / ( D11*D22-ONE )
  371. D12 = T / D12
  372. *
  373. DO 50 J = K - 2, 1, -1
  374. WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  375. $ AP( J+( K-1 )*K / 2 ) )
  376. WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  377. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  378. DO 40 I = J, 1, -1
  379. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  380. $ AP( I+( K-1 )*K / 2 )*WK -
  381. $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  382. 40 CONTINUE
  383. AP( J+( K-1 )*K / 2 ) = WK
  384. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  385. 50 CONTINUE
  386. *
  387. END IF
  388. *
  389. END IF
  390. END IF
  391. *
  392. * Store details of the interchanges in IPIV
  393. *
  394. IF( KSTEP.EQ.1 ) THEN
  395. IPIV( K ) = KP
  396. ELSE
  397. IPIV( K ) = -KP
  398. IPIV( K-1 ) = -KP
  399. END IF
  400. *
  401. * Decrease K and return to the start of the main loop
  402. *
  403. K = K - KSTEP
  404. KC = KNC - K
  405. GO TO 10
  406. *
  407. ELSE
  408. *
  409. * Factorize A as L*D*L**T using the lower triangle of A
  410. *
  411. * K is the main loop index, increasing from 1 to N in steps of
  412. * 1 or 2
  413. *
  414. K = 1
  415. KC = 1
  416. NPP = N*( N+1 ) / 2
  417. 60 CONTINUE
  418. KNC = KC
  419. *
  420. * If K > N, exit from loop
  421. *
  422. IF( K.GT.N )
  423. $ GO TO 110
  424. KSTEP = 1
  425. *
  426. * Determine rows and columns to be interchanged and whether
  427. * a 1-by-1 or 2-by-2 pivot block will be used
  428. *
  429. ABSAKK = ABS( AP( KC ) )
  430. *
  431. * IMAX is the row-index of the largest off-diagonal element in
  432. * column K, and COLMAX is its absolute value
  433. *
  434. IF( K.LT.N ) THEN
  435. IMAX = K + ISAMAX( N-K, AP( KC+1 ), 1 )
  436. COLMAX = ABS( AP( KC+IMAX-K ) )
  437. ELSE
  438. COLMAX = ZERO
  439. END IF
  440. *
  441. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  442. *
  443. * Column K is zero: set INFO and continue
  444. *
  445. IF( INFO.EQ.0 )
  446. $ INFO = K
  447. KP = K
  448. ELSE
  449. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  450. *
  451. * no interchange, use 1-by-1 pivot block
  452. *
  453. KP = K
  454. ELSE
  455. *
  456. * JMAX is the column-index of the largest off-diagonal
  457. * element in row IMAX, and ROWMAX is its absolute value
  458. *
  459. ROWMAX = ZERO
  460. KX = KC + IMAX - K
  461. DO 70 J = K, IMAX - 1
  462. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  463. ROWMAX = ABS( AP( KX ) )
  464. JMAX = J
  465. END IF
  466. KX = KX + N - J
  467. 70 CONTINUE
  468. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  469. IF( IMAX.LT.N ) THEN
  470. JMAX = IMAX + ISAMAX( N-IMAX, AP( KPC+1 ), 1 )
  471. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  472. END IF
  473. *
  474. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  475. *
  476. * no interchange, use 1-by-1 pivot block
  477. *
  478. KP = K
  479. ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  480. *
  481. * interchange rows and columns K and IMAX, use 1-by-1
  482. * pivot block
  483. *
  484. KP = IMAX
  485. ELSE
  486. *
  487. * interchange rows and columns K+1 and IMAX, use 2-by-2
  488. * pivot block
  489. *
  490. KP = IMAX
  491. KSTEP = 2
  492. END IF
  493. END IF
  494. *
  495. KK = K + KSTEP - 1
  496. IF( KSTEP.EQ.2 )
  497. $ KNC = KNC + N - K + 1
  498. IF( KP.NE.KK ) THEN
  499. *
  500. * Interchange rows and columns KK and KP in the trailing
  501. * submatrix A(k:n,k:n)
  502. *
  503. IF( KP.LT.N )
  504. $ CALL SSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  505. $ 1 )
  506. KX = KNC + KP - KK
  507. DO 80 J = KK + 1, KP - 1
  508. KX = KX + N - J + 1
  509. T = AP( KNC+J-KK )
  510. AP( KNC+J-KK ) = AP( KX )
  511. AP( KX ) = T
  512. 80 CONTINUE
  513. T = AP( KNC )
  514. AP( KNC ) = AP( KPC )
  515. AP( KPC ) = T
  516. IF( KSTEP.EQ.2 ) THEN
  517. T = AP( KC+1 )
  518. AP( KC+1 ) = AP( KC+KP-K )
  519. AP( KC+KP-K ) = T
  520. END IF
  521. END IF
  522. *
  523. * Update the trailing submatrix
  524. *
  525. IF( KSTEP.EQ.1 ) THEN
  526. *
  527. * 1-by-1 pivot block D(k): column k now holds
  528. *
  529. * W(k) = L(k)*D(k)
  530. *
  531. * where L(k) is the k-th column of L
  532. *
  533. IF( K.LT.N ) THEN
  534. *
  535. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  536. *
  537. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  538. *
  539. R1 = ONE / AP( KC )
  540. CALL SSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  541. $ AP( KC+N-K+1 ) )
  542. *
  543. * Store L(k) in column K
  544. *
  545. CALL SSCAL( N-K, R1, AP( KC+1 ), 1 )
  546. END IF
  547. ELSE
  548. *
  549. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  550. *
  551. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  552. *
  553. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  554. * of L
  555. *
  556. IF( K.LT.N-1 ) THEN
  557. *
  558. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  559. *
  560. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  561. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  562. *
  563. * where L(k) and L(k+1) are the k-th and (k+1)-th
  564. * columns of L
  565. *
  566. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  567. D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  568. D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  569. T = ONE / ( D11*D22-ONE )
  570. D21 = T / D21
  571. *
  572. DO 100 J = K + 2, N
  573. WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  574. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  575. WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  576. $ AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  577. *
  578. DO 90 I = J, N
  579. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  580. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  581. $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  582. 90 CONTINUE
  583. *
  584. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  585. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  586. *
  587. 100 CONTINUE
  588. END IF
  589. END IF
  590. END IF
  591. *
  592. * Store details of the interchanges in IPIV
  593. *
  594. IF( KSTEP.EQ.1 ) THEN
  595. IPIV( K ) = KP
  596. ELSE
  597. IPIV( K ) = -KP
  598. IPIV( K+1 ) = -KP
  599. END IF
  600. *
  601. * Increase K and return to the start of the main loop
  602. *
  603. K = K + KSTEP
  604. KC = KNC + N - K + 2
  605. GO TO 60
  606. *
  607. END IF
  608. *
  609. 110 CONTINUE
  610. RETURN
  611. *
  612. * End of SSPTRF
  613. *
  614. END