You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorm22.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. *> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORM22 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  22. * $ WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose
  33. * ============
  34. *>
  35. *> \verbatim
  36. *>
  37. *>
  38. *> SORM22 overwrites the general real M-by-N matrix C with
  39. *>
  40. *> SIDE = 'L' SIDE = 'R'
  41. *> TRANS = 'N': Q * C C * Q
  42. *> TRANS = 'T': Q**T * C C * Q**T
  43. *>
  44. *> where Q is a real orthogonal matrix of order NQ, with NQ = M if
  45. *> SIDE = 'L' and NQ = N if SIDE = 'R'.
  46. *> The orthogonal matrix Q processes a 2-by-2 block structure
  47. *>
  48. *> [ Q11 Q12 ]
  49. *> Q = [ ]
  50. *> [ Q21 Q22 ],
  51. *>
  52. *> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
  53. *> N2-by-N2 upper triangular matrix.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] SIDE
  60. *> \verbatim
  61. *> SIDE is CHARACTER*1
  62. *> = 'L': apply Q or Q**T from the Left;
  63. *> = 'R': apply Q or Q**T from the Right.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] TRANS
  67. *> \verbatim
  68. *> TRANS is CHARACTER*1
  69. *> = 'N': apply Q (No transpose);
  70. *> = 'C': apply Q**T (Conjugate transpose).
  71. *> \endverbatim
  72. *>
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> The number of rows of the matrix C. M >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The number of columns of the matrix C. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N1
  86. *> \param[in] N2
  87. *> \verbatim
  88. *> N1 is INTEGER
  89. *> N2 is INTEGER
  90. *> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
  91. *> The following requirement must be satisfied:
  92. *> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] Q
  96. *> \verbatim
  97. *> Q is REAL array, dimension
  98. *> (LDQ,M) if SIDE = 'L'
  99. *> (LDQ,N) if SIDE = 'R'
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDQ
  103. *> \verbatim
  104. *> LDQ is INTEGER
  105. *> The leading dimension of the array Q.
  106. *> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] C
  110. *> \verbatim
  111. *> C is REAL array, dimension (LDC,N)
  112. *> On entry, the M-by-N matrix C.
  113. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDC
  117. *> \verbatim
  118. *> LDC is INTEGER
  119. *> The leading dimension of the array C. LDC >= max(1,M).
  120. *> \endverbatim
  121. *>
  122. *> \param[out] WORK
  123. *> \verbatim
  124. *> WORK is REAL array, dimension (MAX(1,LWORK))
  125. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LWORK
  129. *> \verbatim
  130. *> LWORK is INTEGER
  131. *> The dimension of the array WORK.
  132. *> If SIDE = 'L', LWORK >= max(1,N);
  133. *> if SIDE = 'R', LWORK >= max(1,M).
  134. *> For optimum performance LWORK >= M*N.
  135. *>
  136. *> If LWORK = -1, then a workspace query is assumed; the routine
  137. *> only calculates the optimal size of the WORK array, returns
  138. *> this value as the first entry of the WORK array, and no error
  139. *> message related to LWORK is issued by XERBLA.
  140. *> \endverbatim
  141. *>
  142. *> \param[out] INFO
  143. *> \verbatim
  144. *> INFO is INTEGER
  145. *> = 0: successful exit
  146. *> < 0: if INFO = -i, the i-th argument had an illegal value
  147. *> \endverbatim
  148. *
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \date January 2015
  159. *
  160. *> \ingroup complexOTHERcomputational
  161. *
  162. * =====================================================================
  163. SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  164. $ WORK, LWORK, INFO )
  165. *
  166. * -- LAPACK computational routine (version 3.7.1) --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. * January 2015
  170. *
  171. IMPLICIT NONE
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER SIDE, TRANS
  175. INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  176. * ..
  177. * .. Array Arguments ..
  178. REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
  179. * ..
  180. *
  181. * =====================================================================
  182. *
  183. * .. Parameters ..
  184. REAL ONE
  185. PARAMETER ( ONE = 1.0E+0 )
  186. *
  187. * .. Local Scalars ..
  188. LOGICAL LEFT, LQUERY, NOTRAN
  189. INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  190. * ..
  191. * .. External Functions ..
  192. LOGICAL LSAME
  193. EXTERNAL LSAME
  194. * ..
  195. * .. External Subroutines ..
  196. EXTERNAL SGEMM, SLACPY, STRMM, XERBLA
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC REAL, MAX, MIN
  200. * ..
  201. * .. Executable Statements ..
  202. *
  203. * Test the input arguments
  204. *
  205. INFO = 0
  206. LEFT = LSAME( SIDE, 'L' )
  207. NOTRAN = LSAME( TRANS, 'N' )
  208. LQUERY = ( LWORK.EQ.-1 )
  209. *
  210. * NQ is the order of Q;
  211. * NW is the minimum dimension of WORK.
  212. *
  213. IF( LEFT ) THEN
  214. NQ = M
  215. ELSE
  216. NQ = N
  217. END IF
  218. NW = NQ
  219. IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  220. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  221. INFO = -1
  222. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  223. $ THEN
  224. INFO = -2
  225. ELSE IF( M.LT.0 ) THEN
  226. INFO = -3
  227. ELSE IF( N.LT.0 ) THEN
  228. INFO = -4
  229. ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  230. INFO = -5
  231. ELSE IF( N2.LT.0 ) THEN
  232. INFO = -6
  233. ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  234. INFO = -8
  235. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  236. INFO = -10
  237. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  238. INFO = -12
  239. END IF
  240. *
  241. IF( INFO.EQ.0 ) THEN
  242. LWKOPT = M*N
  243. WORK( 1 ) = REAL( LWKOPT )
  244. END IF
  245. *
  246. IF( INFO.NE.0 ) THEN
  247. CALL XERBLA( 'SORM22', -INFO )
  248. RETURN
  249. ELSE IF( LQUERY ) THEN
  250. RETURN
  251. END IF
  252. *
  253. * Quick return if possible
  254. *
  255. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  256. WORK( 1 ) = 1
  257. RETURN
  258. END IF
  259. *
  260. * Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
  261. *
  262. IF( N1.EQ.0 ) THEN
  263. CALL STRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  264. $ Q, LDQ, C, LDC )
  265. WORK( 1 ) = ONE
  266. RETURN
  267. ELSE IF( N2.EQ.0 ) THEN
  268. CALL STRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  269. $ Q, LDQ, C, LDC )
  270. WORK( 1 ) = ONE
  271. RETURN
  272. END IF
  273. *
  274. * Compute the largest chunk size available from the workspace.
  275. *
  276. NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  277. *
  278. IF( LEFT ) THEN
  279. IF( NOTRAN ) THEN
  280. DO I = 1, N, NB
  281. LEN = MIN( NB, N-I+1 )
  282. LDWORK = M
  283. *
  284. * Multiply bottom part of C by Q12.
  285. *
  286. CALL SLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  287. $ LDWORK )
  288. CALL STRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  289. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  290. $ LDWORK )
  291. *
  292. * Multiply top part of C by Q11.
  293. *
  294. CALL SGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  295. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  296. $ LDWORK )
  297. *
  298. * Multiply top part of C by Q21.
  299. *
  300. CALL SLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  301. $ WORK( N1+1 ), LDWORK )
  302. CALL STRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  303. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  304. $ WORK( N1+1 ), LDWORK )
  305. *
  306. * Multiply bottom part of C by Q22.
  307. *
  308. CALL SGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  309. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  310. $ ONE, WORK( N1+1 ), LDWORK )
  311. *
  312. * Copy everything back.
  313. *
  314. CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  315. $ LDC )
  316. END DO
  317. ELSE
  318. DO I = 1, N, NB
  319. LEN = MIN( NB, N-I+1 )
  320. LDWORK = M
  321. *
  322. * Multiply bottom part of C by Q21**T.
  323. *
  324. CALL SLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  325. $ LDWORK )
  326. CALL STRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
  327. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  328. $ LDWORK )
  329. *
  330. * Multiply top part of C by Q11**T.
  331. *
  332. CALL SGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
  333. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  334. $ LDWORK )
  335. *
  336. * Multiply top part of C by Q12**T.
  337. *
  338. CALL SLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  339. $ WORK( N2+1 ), LDWORK )
  340. CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
  341. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  342. $ WORK( N2+1 ), LDWORK )
  343. *
  344. * Multiply bottom part of C by Q22**T.
  345. *
  346. CALL SGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
  347. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  348. $ ONE, WORK( N2+1 ), LDWORK )
  349. *
  350. * Copy everything back.
  351. *
  352. CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  353. $ LDC )
  354. END DO
  355. END IF
  356. ELSE
  357. IF( NOTRAN ) THEN
  358. DO I = 1, M, NB
  359. LEN = MIN( NB, M-I+1 )
  360. LDWORK = LEN
  361. *
  362. * Multiply right part of C by Q21.
  363. *
  364. CALL SLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  365. $ LDWORK )
  366. CALL STRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  367. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  368. $ LDWORK )
  369. *
  370. * Multiply left part of C by Q11.
  371. *
  372. CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  373. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  374. $ LDWORK )
  375. *
  376. * Multiply left part of C by Q12.
  377. *
  378. CALL SLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  379. $ WORK( 1 + N2*LDWORK ), LDWORK )
  380. CALL STRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  381. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  382. $ WORK( 1 + N2*LDWORK ), LDWORK )
  383. *
  384. * Multiply right part of C by Q22.
  385. *
  386. CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  387. $ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  388. $ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  389. *
  390. * Copy everything back.
  391. *
  392. CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  393. $ LDC )
  394. END DO
  395. ELSE
  396. DO I = 1, M, NB
  397. LEN = MIN( NB, M-I+1 )
  398. LDWORK = LEN
  399. *
  400. * Multiply right part of C by Q12**T.
  401. *
  402. CALL SLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  403. $ LDWORK )
  404. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
  405. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  406. $ LDWORK )
  407. *
  408. * Multiply left part of C by Q11**T.
  409. *
  410. CALL SGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
  411. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  412. $ LDWORK )
  413. *
  414. * Multiply left part of C by Q21**T.
  415. *
  416. CALL SLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  417. $ WORK( 1 + N1*LDWORK ), LDWORK )
  418. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
  419. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  420. $ WORK( 1 + N1*LDWORK ), LDWORK )
  421. *
  422. * Multiply right part of C by Q22**T.
  423. *
  424. CALL SGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
  425. $ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  426. $ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  427. *
  428. * Copy everything back.
  429. *
  430. CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  431. $ LDC )
  432. END DO
  433. END IF
  434. END IF
  435. *
  436. WORK( 1 ) = REAL( LWKOPT )
  437. RETURN
  438. *
  439. * End of SORM22
  440. *
  441. END