You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd2by1.f 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. *> \brief \b SORCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBU1, JOBU2, JOBV1T
  27. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  28. * $ M, P, Q
  29. * ..
  30. * .. Array Arguments ..
  31. * REAL THETA(*)
  32. * REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  33. * $ X11(LDX11,*), X21(LDX21,*)
  34. * INTEGER IWORK(*)
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *>\verbatim
  42. *>
  43. *> SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  44. *> orthonormal columns that has been partitioned into a 2-by-1 block
  45. *> structure:
  46. *>
  47. *> [ I1 0 0 ]
  48. *> [ 0 C 0 ]
  49. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  50. *> X = [-----] = [---------] [----------] V1**T .
  51. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  52. *> [ 0 S 0 ]
  53. *> [ 0 0 I2]
  54. *>
  55. *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
  56. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  57. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  58. *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
  59. *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
  60. *> \endverbatim
  61. *
  62. * Arguments:
  63. * ==========
  64. *
  65. *> \param[in] JOBU1
  66. *> \verbatim
  67. *> JOBU1 is CHARACTER
  68. *> = 'Y': U1 is computed;
  69. *> otherwise: U1 is not computed.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] JOBU2
  73. *> \verbatim
  74. *> JOBU2 is CHARACTER
  75. *> = 'Y': U2 is computed;
  76. *> otherwise: U2 is not computed.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] JOBV1T
  80. *> \verbatim
  81. *> JOBV1T is CHARACTER
  82. *> = 'Y': V1T is computed;
  83. *> otherwise: V1T is not computed.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] M
  87. *> \verbatim
  88. *> M is INTEGER
  89. *> The number of rows in X.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] P
  93. *> \verbatim
  94. *> P is INTEGER
  95. *> The number of rows in X11. 0 <= P <= M.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] Q
  99. *> \verbatim
  100. *> Q is INTEGER
  101. *> The number of columns in X11 and X21. 0 <= Q <= M.
  102. *> \endverbatim
  103. *>
  104. *> \param[in,out] X11
  105. *> \verbatim
  106. *> X11 is REAL array, dimension (LDX11,Q)
  107. *> On entry, part of the orthogonal matrix whose CSD is desired.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDX11
  111. *> \verbatim
  112. *> LDX11 is INTEGER
  113. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] X21
  117. *> \verbatim
  118. *> X21 is REAL array, dimension (LDX21,Q)
  119. *> On entry, part of the orthogonal matrix whose CSD is desired.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDX21
  123. *> \verbatim
  124. *> LDX21 is INTEGER
  125. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] THETA
  129. *> \verbatim
  130. *> THETA is REAL array, dimension (R), in which R =
  131. *> MIN(P,M-P,Q,M-Q).
  132. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  133. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  134. *> \endverbatim
  135. *>
  136. *> \param[out] U1
  137. *> \verbatim
  138. *> U1 is REAL array, dimension (P)
  139. *> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LDU1
  143. *> \verbatim
  144. *> LDU1 is INTEGER
  145. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  146. *> MAX(1,P).
  147. *> \endverbatim
  148. *>
  149. *> \param[out] U2
  150. *> \verbatim
  151. *> U2 is REAL array, dimension (M-P)
  152. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  153. *> matrix U2.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] LDU2
  157. *> \verbatim
  158. *> LDU2 is INTEGER
  159. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  160. *> MAX(1,M-P).
  161. *> \endverbatim
  162. *>
  163. *> \param[out] V1T
  164. *> \verbatim
  165. *> V1T is REAL array, dimension (Q)
  166. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  167. *> matrix V1**T.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] LDV1T
  171. *> \verbatim
  172. *> LDV1T is INTEGER
  173. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  174. *> MAX(1,Q).
  175. *> \endverbatim
  176. *>
  177. *> \param[out] WORK
  178. *> \verbatim
  179. *> WORK is REAL array, dimension (MAX(1,LWORK))
  180. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  181. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  182. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  183. *> define the matrix in intermediate bidiagonal-block form
  184. *> remaining after nonconvergence. INFO specifies the number
  185. *> of nonzero PHI's.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LWORK
  189. *> \verbatim
  190. *> LWORK is INTEGER
  191. *> The dimension of the array WORK.
  192. *>
  193. *> If LWORK = -1, then a workspace query is assumed; the routine
  194. *> only calculates the optimal size of the WORK array, returns
  195. *> this value as the first entry of the work array, and no error
  196. *> message related to LWORK is issued by XERBLA.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] IWORK
  200. *> \verbatim
  201. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  202. *> \endverbatim
  203. *>
  204. *> \param[out] INFO
  205. *> \verbatim
  206. *> INFO is INTEGER
  207. *> = 0: successful exit.
  208. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  209. *> > 0: SBBCSD did not converge. See the description of WORK
  210. *> above for details.
  211. *> \endverbatim
  212. *
  213. *> \par References:
  214. * ================
  215. *>
  216. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  217. *> Algorithms, 50(1):33-65, 2009.
  218. *
  219. * Authors:
  220. * ========
  221. *
  222. *> \author Univ. of Tennessee
  223. *> \author Univ. of California Berkeley
  224. *> \author Univ. of Colorado Denver
  225. *> \author NAG Ltd.
  226. *
  227. *> \date July 2012
  228. *
  229. *> \ingroup realOTHERcomputational
  230. *
  231. * =====================================================================
  232. SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  233. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  234. $ LDV1T, WORK, LWORK, IWORK, INFO )
  235. *
  236. * -- LAPACK computational routine (version 3.7.1) --
  237. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  238. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  239. * July 2012
  240. *
  241. * .. Scalar Arguments ..
  242. CHARACTER JOBU1, JOBU2, JOBV1T
  243. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  244. $ M, P, Q
  245. * ..
  246. * .. Array Arguments ..
  247. REAL THETA(*)
  248. REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  249. $ X11(LDX11,*), X21(LDX21,*)
  250. INTEGER IWORK(*)
  251. * ..
  252. *
  253. * =====================================================================
  254. *
  255. * .. Parameters ..
  256. REAL ONE, ZERO
  257. PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
  258. * ..
  259. * .. Local Scalars ..
  260. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  261. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  262. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  263. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  264. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  265. $ LWORKMIN, LWORKOPT, R
  266. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  267. * ..
  268. * .. Local Arrays ..
  269. REAL DUM1(1), DUM2(1,1)
  270. * ..
  271. * .. External Subroutines ..
  272. EXTERNAL SBBCSD, SCOPY, SLACPY, SLAPMR, SLAPMT, SORBDB1,
  273. $ SORBDB2, SORBDB3, SORBDB4, SORGLQ, SORGQR,
  274. $ XERBLA
  275. * ..
  276. * .. External Functions ..
  277. LOGICAL LSAME
  278. EXTERNAL LSAME
  279. * ..
  280. * .. Intrinsic Function ..
  281. INTRINSIC INT, MAX, MIN
  282. * ..
  283. * .. Executable Statements ..
  284. *
  285. * Test input arguments
  286. *
  287. INFO = 0
  288. WANTU1 = LSAME( JOBU1, 'Y' )
  289. WANTU2 = LSAME( JOBU2, 'Y' )
  290. WANTV1T = LSAME( JOBV1T, 'Y' )
  291. LQUERY = LWORK .EQ. -1
  292. *
  293. IF( M .LT. 0 ) THEN
  294. INFO = -4
  295. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  296. INFO = -5
  297. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  298. INFO = -6
  299. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  300. INFO = -8
  301. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  302. INFO = -10
  303. ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  304. INFO = -13
  305. ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  306. INFO = -15
  307. ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  308. INFO = -17
  309. END IF
  310. *
  311. R = MIN( P, M-P, Q, M-Q )
  312. *
  313. * Compute workspace
  314. *
  315. * WORK layout:
  316. * |-------------------------------------------------------|
  317. * | LWORKOPT (1) |
  318. * |-------------------------------------------------------|
  319. * | PHI (MAX(1,R-1)) |
  320. * |-------------------------------------------------------|
  321. * | TAUP1 (MAX(1,P)) | B11D (R) |
  322. * | TAUP2 (MAX(1,M-P)) | B11E (R-1) |
  323. * | TAUQ1 (MAX(1,Q)) | B12D (R) |
  324. * |-----------------------------------------| B12E (R-1) |
  325. * | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) |
  326. * | | | | B21E (R-1) |
  327. * | | | | B22D (R) |
  328. * | | | | B22E (R-1) |
  329. * | | | | SBBCSD WORK |
  330. * |-------------------------------------------------------|
  331. *
  332. IF( INFO .EQ. 0 ) THEN
  333. IPHI = 2
  334. IB11D = IPHI + MAX( 1, R-1 )
  335. IB11E = IB11D + MAX( 1, R )
  336. IB12D = IB11E + MAX( 1, R - 1 )
  337. IB12E = IB12D + MAX( 1, R )
  338. IB21D = IB12E + MAX( 1, R - 1 )
  339. IB21E = IB21D + MAX( 1, R )
  340. IB22D = IB21E + MAX( 1, R - 1 )
  341. IB22E = IB22D + MAX( 1, R )
  342. IBBCSD = IB22E + MAX( 1, R - 1 )
  343. ITAUP1 = IPHI + MAX( 1, R-1 )
  344. ITAUP2 = ITAUP1 + MAX( 1, P )
  345. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  346. IORBDB = ITAUQ1 + MAX( 1, Q )
  347. IORGQR = ITAUQ1 + MAX( 1, Q )
  348. IORGLQ = ITAUQ1 + MAX( 1, Q )
  349. LORGQRMIN = 1
  350. LORGQROPT = 1
  351. LORGLQMIN = 1
  352. LORGLQOPT = 1
  353. IF( R .EQ. Q ) THEN
  354. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  355. $ DUM1, DUM1, DUM1, DUM1, WORK, -1,
  356. $ CHILDINFO )
  357. LORBDB = INT( WORK(1) )
  358. IF( WANTU1 .AND. P .GT. 0 ) THEN
  359. CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  360. $ CHILDINFO )
  361. LORGQRMIN = MAX( LORGQRMIN, P )
  362. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  363. ENDIF
  364. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  365. CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1,
  366. $ CHILDINFO )
  367. LORGQRMIN = MAX( LORGQRMIN, M-P )
  368. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  369. END IF
  370. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  371. CALL SORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  372. $ DUM1, WORK(1), -1, CHILDINFO )
  373. LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  374. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  375. END IF
  376. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  377. $ DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T, DUM2,
  378. $ 1, DUM1, DUM1, DUM1, DUM1, DUM1,
  379. $ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO
  380. $ )
  381. LBBCSD = INT( WORK(1) )
  382. ELSE IF( R .EQ. P ) THEN
  383. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  384. $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
  385. $ CHILDINFO )
  386. LORBDB = INT( WORK(1) )
  387. IF( WANTU1 .AND. P .GT. 0 ) THEN
  388. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1,
  389. $ WORK(1), -1, CHILDINFO )
  390. LORGQRMIN = MAX( LORGQRMIN, P-1 )
  391. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  392. END IF
  393. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  394. CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1,
  395. $ CHILDINFO )
  396. LORGQRMIN = MAX( LORGQRMIN, M-P )
  397. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  398. END IF
  399. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  400. CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  401. $ CHILDINFO )
  402. LORGLQMIN = MAX( LORGLQMIN, Q )
  403. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  404. END IF
  405. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  406. $ DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1, U2,
  407. $ LDU2, DUM1, DUM1, DUM1, DUM1, DUM1,
  408. $ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO
  409. $ )
  410. LBBCSD = INT( WORK(1) )
  411. ELSE IF( R .EQ. M-P ) THEN
  412. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  413. $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
  414. $ CHILDINFO )
  415. LORBDB = INT( WORK(1) )
  416. IF( WANTU1 .AND. P .GT. 0 ) THEN
  417. CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  418. $ CHILDINFO )
  419. LORGQRMIN = MAX( LORGQRMIN, P )
  420. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  421. END IF
  422. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  423. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, DUM1,
  424. $ WORK(1), -1, CHILDINFO )
  425. LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  426. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  427. END IF
  428. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  429. CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  430. $ CHILDINFO )
  431. LORGLQMIN = MAX( LORGLQMIN, Q )
  432. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  433. END IF
  434. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  435. $ THETA, DUM1, DUM2, 1, V1T, LDV1T, U2, LDU2,
  436. $ U1, LDU1, DUM1, DUM1, DUM1, DUM1,
  437. $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
  438. $ CHILDINFO )
  439. LBBCSD = INT( WORK(1) )
  440. ELSE
  441. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  442. $ DUM1, DUM1, DUM1, DUM1, DUM1,
  443. $ WORK(1), -1, CHILDINFO )
  444. LORBDB = M + INT( WORK(1) )
  445. IF( WANTU1 .AND. P .GT. 0 ) THEN
  446. CALL SORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1,
  447. $ CHILDINFO )
  448. LORGQRMIN = MAX( LORGQRMIN, P )
  449. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  450. END IF
  451. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  452. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1),
  453. $ -1, CHILDINFO )
  454. LORGQRMIN = MAX( LORGQRMIN, M-P )
  455. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  456. END IF
  457. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  458. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1,
  459. $ CHILDINFO )
  460. LORGLQMIN = MAX( LORGLQMIN, Q )
  461. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  462. END IF
  463. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  464. $ THETA, DUM1, U2, LDU2, U1, LDU1, DUM2, 1,
  465. $ V1T, LDV1T, DUM1, DUM1, DUM1, DUM1,
  466. $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1,
  467. $ CHILDINFO )
  468. LBBCSD = INT( WORK(1) )
  469. END IF
  470. LWORKMIN = MAX( IORBDB+LORBDB-1,
  471. $ IORGQR+LORGQRMIN-1,
  472. $ IORGLQ+LORGLQMIN-1,
  473. $ IBBCSD+LBBCSD-1 )
  474. LWORKOPT = MAX( IORBDB+LORBDB-1,
  475. $ IORGQR+LORGQROPT-1,
  476. $ IORGLQ+LORGLQOPT-1,
  477. $ IBBCSD+LBBCSD-1 )
  478. WORK(1) = LWORKOPT
  479. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  480. INFO = -19
  481. END IF
  482. END IF
  483. IF( INFO .NE. 0 ) THEN
  484. CALL XERBLA( 'SORCSD2BY1', -INFO )
  485. RETURN
  486. ELSE IF( LQUERY ) THEN
  487. RETURN
  488. END IF
  489. LORGQR = LWORK-IORGQR+1
  490. LORGLQ = LWORK-IORGLQ+1
  491. *
  492. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  493. * in which R = MIN(P,M-P,Q,M-Q)
  494. *
  495. IF( R .EQ. Q ) THEN
  496. *
  497. * Case 1: R = Q
  498. *
  499. * Simultaneously bidiagonalize X11 and X21
  500. *
  501. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  502. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  503. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  504. *
  505. * Accumulate Householder reflectors
  506. *
  507. IF( WANTU1 .AND. P .GT. 0 ) THEN
  508. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  509. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  510. $ LORGQR, CHILDINFO )
  511. END IF
  512. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  513. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  514. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  515. $ WORK(IORGQR), LORGQR, CHILDINFO )
  516. END IF
  517. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  518. V1T(1,1) = ONE
  519. DO J = 2, Q
  520. V1T(1,J) = ZERO
  521. V1T(J,1) = ZERO
  522. END DO
  523. CALL SLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  524. $ LDV1T )
  525. CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  526. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  527. END IF
  528. *
  529. * Simultaneously diagonalize X11 and X21.
  530. *
  531. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  532. $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T,
  533. $ DUM2, 1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  534. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  535. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  536. $ CHILDINFO )
  537. *
  538. * Permute rows and columns to place zero submatrices in
  539. * preferred positions
  540. *
  541. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  542. DO I = 1, Q
  543. IWORK(I) = M - P - Q + I
  544. END DO
  545. DO I = Q + 1, M - P
  546. IWORK(I) = I - Q
  547. END DO
  548. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  549. END IF
  550. ELSE IF( R .EQ. P ) THEN
  551. *
  552. * Case 2: R = P
  553. *
  554. * Simultaneously bidiagonalize X11 and X21
  555. *
  556. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  557. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  558. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  559. *
  560. * Accumulate Householder reflectors
  561. *
  562. IF( WANTU1 .AND. P .GT. 0 ) THEN
  563. U1(1,1) = ONE
  564. DO J = 2, P
  565. U1(1,J) = ZERO
  566. U1(J,1) = ZERO
  567. END DO
  568. CALL SLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  569. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  570. $ WORK(IORGQR), LORGQR, CHILDINFO )
  571. END IF
  572. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  573. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  574. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  575. $ WORK(IORGQR), LORGQR, CHILDINFO )
  576. END IF
  577. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  578. CALL SLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  579. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  580. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  581. END IF
  582. *
  583. * Simultaneously diagonalize X11 and X21.
  584. *
  585. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  586. $ WORK(IPHI), V1T, LDV1T, DUM1, 1, U1, LDU1, U2,
  587. $ LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  588. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  589. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  590. $ CHILDINFO )
  591. *
  592. * Permute rows and columns to place identity submatrices in
  593. * preferred positions
  594. *
  595. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  596. DO I = 1, Q
  597. IWORK(I) = M - P - Q + I
  598. END DO
  599. DO I = Q + 1, M - P
  600. IWORK(I) = I - Q
  601. END DO
  602. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  603. END IF
  604. ELSE IF( R .EQ. M-P ) THEN
  605. *
  606. * Case 3: R = M-P
  607. *
  608. * Simultaneously bidiagonalize X11 and X21
  609. *
  610. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  611. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  612. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  613. *
  614. * Accumulate Householder reflectors
  615. *
  616. IF( WANTU1 .AND. P .GT. 0 ) THEN
  617. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  618. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  619. $ LORGQR, CHILDINFO )
  620. END IF
  621. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  622. U2(1,1) = ONE
  623. DO J = 2, M-P
  624. U2(1,J) = ZERO
  625. U2(J,1) = ZERO
  626. END DO
  627. CALL SLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  628. $ LDU2 )
  629. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  630. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  631. END IF
  632. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  633. CALL SLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  634. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  635. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  636. END IF
  637. *
  638. * Simultaneously diagonalize X11 and X21.
  639. *
  640. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  641. $ THETA, WORK(IPHI), DUM1, 1, V1T, LDV1T, U2,
  642. $ LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E),
  643. $ WORK(IB12D), WORK(IB12E), WORK(IB21D),
  644. $ WORK(IB21E), WORK(IB22D), WORK(IB22E),
  645. $ WORK(IBBCSD), LBBCSD, CHILDINFO )
  646. *
  647. * Permute rows and columns to place identity submatrices in
  648. * preferred positions
  649. *
  650. IF( Q .GT. R ) THEN
  651. DO I = 1, R
  652. IWORK(I) = Q - R + I
  653. END DO
  654. DO I = R + 1, Q
  655. IWORK(I) = I - R
  656. END DO
  657. IF( WANTU1 ) THEN
  658. CALL SLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  659. END IF
  660. IF( WANTV1T ) THEN
  661. CALL SLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  662. END IF
  663. END IF
  664. ELSE
  665. *
  666. * Case 4: R = M-Q
  667. *
  668. * Simultaneously bidiagonalize X11 and X21
  669. *
  670. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  671. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  672. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  673. $ LORBDB-M, CHILDINFO )
  674. *
  675. * Accumulate Householder reflectors
  676. *
  677. IF( WANTU1 .AND. P .GT. 0 ) THEN
  678. CALL SCOPY( P, WORK(IORBDB), 1, U1, 1 )
  679. DO J = 2, P
  680. U1(1,J) = ZERO
  681. END DO
  682. CALL SLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  683. $ LDU1 )
  684. CALL SORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  685. $ WORK(IORGQR), LORGQR, CHILDINFO )
  686. END IF
  687. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  688. CALL SCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  689. DO J = 2, M-P
  690. U2(1,J) = ZERO
  691. END DO
  692. CALL SLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  693. $ LDU2 )
  694. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  695. $ WORK(IORGQR), LORGQR, CHILDINFO )
  696. END IF
  697. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  698. CALL SLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  699. CALL SLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  700. $ V1T(M-Q+1,M-Q+1), LDV1T )
  701. CALL SLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  702. $ V1T(P+1,P+1), LDV1T )
  703. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  704. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  705. END IF
  706. *
  707. * Simultaneously diagonalize X11 and X21.
  708. *
  709. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  710. $ THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM1, 1,
  711. $ V1T, LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  712. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  713. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  714. $ CHILDINFO )
  715. *
  716. * Permute rows and columns to place identity submatrices in
  717. * preferred positions
  718. *
  719. IF( P .GT. R ) THEN
  720. DO I = 1, R
  721. IWORK(I) = P - R + I
  722. END DO
  723. DO I = R + 1, P
  724. IWORK(I) = I - R
  725. END DO
  726. IF( WANTU1 ) THEN
  727. CALL SLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  728. END IF
  729. IF( WANTV1T ) THEN
  730. CALL SLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  731. END IF
  732. END IF
  733. END IF
  734. *
  735. RETURN
  736. *
  737. * End of SORCSD2BY1
  738. *
  739. END