You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqp2.f 7.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. *> \brief \b SLAQP2 computes a QR factorization with column pivoting of the matrix block.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAQP2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqp2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqp2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqp2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER LDA, M, N, OFFSET
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER JPVT( * )
  29. * REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLAQP2 computes a QR factorization with column pivoting of
  40. *> the block A(OFFSET+1:M,1:N).
  41. *> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] M
  48. *> \verbatim
  49. *> M is INTEGER
  50. *> The number of rows of the matrix A. M >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The number of columns of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] OFFSET
  60. *> \verbatim
  61. *> OFFSET is INTEGER
  62. *> The number of rows of the matrix A that must be pivoted
  63. *> but no factorized. OFFSET >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] A
  67. *> \verbatim
  68. *> A is REAL array, dimension (LDA,N)
  69. *> On entry, the M-by-N matrix A.
  70. *> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
  71. *> the triangular factor obtained; the elements in block
  72. *> A(OFFSET+1:M,1:N) below the diagonal, together with the
  73. *> array TAU, represent the orthogonal matrix Q as a product of
  74. *> elementary reflectors. Block A(1:OFFSET,1:N) has been
  75. *> accordingly pivoted, but no factorized.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDA
  79. *> \verbatim
  80. *> LDA is INTEGER
  81. *> The leading dimension of the array A. LDA >= max(1,M).
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] JPVT
  85. *> \verbatim
  86. *> JPVT is INTEGER array, dimension (N)
  87. *> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
  88. *> to the front of A*P (a leading column); if JPVT(i) = 0,
  89. *> the i-th column of A is a free column.
  90. *> On exit, if JPVT(i) = k, then the i-th column of A*P
  91. *> was the k-th column of A.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] TAU
  95. *> \verbatim
  96. *> TAU is REAL array, dimension (min(M,N))
  97. *> The scalar factors of the elementary reflectors.
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] VN1
  101. *> \verbatim
  102. *> VN1 is REAL array, dimension (N)
  103. *> The vector with the partial column norms.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] VN2
  107. *> \verbatim
  108. *> VN2 is REAL array, dimension (N)
  109. *> The vector with the exact column norms.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] WORK
  113. *> \verbatim
  114. *> WORK is REAL array, dimension (N)
  115. *> \endverbatim
  116. *
  117. * Authors:
  118. * ========
  119. *
  120. *> \author Univ. of Tennessee
  121. *> \author Univ. of California Berkeley
  122. *> \author Univ. of Colorado Denver
  123. *> \author NAG Ltd.
  124. *
  125. *> \date December 2016
  126. *
  127. *> \ingroup realOTHERauxiliary
  128. *
  129. *> \par Contributors:
  130. * ==================
  131. *>
  132. *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  133. *> X. Sun, Computer Science Dept., Duke University, USA
  134. *> \n
  135. *> Partial column norm updating strategy modified on April 2011
  136. *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
  137. *> University of Zagreb, Croatia.
  138. *
  139. *> \par References:
  140. * ================
  141. *>
  142. *> LAPACK Working Note 176
  143. *
  144. *> \htmlonly
  145. *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
  146. *> \endhtmlonly
  147. *
  148. * =====================================================================
  149. SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
  150. $ WORK )
  151. *
  152. * -- LAPACK auxiliary routine (version 3.7.0) --
  153. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  154. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155. * December 2016
  156. *
  157. * .. Scalar Arguments ..
  158. INTEGER LDA, M, N, OFFSET
  159. * ..
  160. * .. Array Arguments ..
  161. INTEGER JPVT( * )
  162. REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
  163. $ WORK( * )
  164. * ..
  165. *
  166. * =====================================================================
  167. *
  168. * .. Parameters ..
  169. REAL ZERO, ONE
  170. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  171. * ..
  172. * .. Local Scalars ..
  173. INTEGER I, ITEMP, J, MN, OFFPI, PVT
  174. REAL AII, TEMP, TEMP2, TOL3Z
  175. * ..
  176. * .. External Subroutines ..
  177. EXTERNAL SLARF, SLARFG, SSWAP
  178. * ..
  179. * .. Intrinsic Functions ..
  180. INTRINSIC ABS, MAX, MIN, SQRT
  181. * ..
  182. * .. External Functions ..
  183. INTEGER ISAMAX
  184. REAL SLAMCH, SNRM2
  185. EXTERNAL ISAMAX, SLAMCH, SNRM2
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. MN = MIN( M-OFFSET, N )
  190. TOL3Z = SQRT(SLAMCH('Epsilon'))
  191. *
  192. * Compute factorization.
  193. *
  194. DO 20 I = 1, MN
  195. *
  196. OFFPI = OFFSET + I
  197. *
  198. * Determine ith pivot column and swap if necessary.
  199. *
  200. PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
  201. *
  202. IF( PVT.NE.I ) THEN
  203. CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
  204. ITEMP = JPVT( PVT )
  205. JPVT( PVT ) = JPVT( I )
  206. JPVT( I ) = ITEMP
  207. VN1( PVT ) = VN1( I )
  208. VN2( PVT ) = VN2( I )
  209. END IF
  210. *
  211. * Generate elementary reflector H(i).
  212. *
  213. IF( OFFPI.LT.M ) THEN
  214. CALL SLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
  215. $ TAU( I ) )
  216. ELSE
  217. CALL SLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
  218. END IF
  219. *
  220. IF( I.LT.N ) THEN
  221. *
  222. * Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
  223. *
  224. AII = A( OFFPI, I )
  225. A( OFFPI, I ) = ONE
  226. CALL SLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
  227. $ TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
  228. A( OFFPI, I ) = AII
  229. END IF
  230. *
  231. * Update partial column norms.
  232. *
  233. DO 10 J = I + 1, N
  234. IF( VN1( J ).NE.ZERO ) THEN
  235. *
  236. * NOTE: The following 4 lines follow from the analysis in
  237. * Lapack Working Note 176.
  238. *
  239. TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
  240. TEMP = MAX( TEMP, ZERO )
  241. TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
  242. IF( TEMP2 .LE. TOL3Z ) THEN
  243. IF( OFFPI.LT.M ) THEN
  244. VN1( J ) = SNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
  245. VN2( J ) = VN1( J )
  246. ELSE
  247. VN1( J ) = ZERO
  248. VN2( J ) = ZERO
  249. END IF
  250. ELSE
  251. VN1( J ) = VN1( J )*SQRT( TEMP )
  252. END IF
  253. END IF
  254. 10 CONTINUE
  255. *
  256. 20 CONTINUE
  257. *
  258. RETURN
  259. *
  260. * End of SLAQP2
  261. *
  262. END