|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- *> \brief \b SLA_SYRCOND estimates the Skeel condition number for a symmetric indefinite matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLA_SYRCOND + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_syrcond.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_syrcond.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_syrcond.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV, CMODE,
- * C, INFO, WORK, IWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER N, LDA, LDAF, INFO, CMODE
- * ..
- * .. Array Arguments
- * INTEGER IWORK( * ), IPIV( * )
- * REAL A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLA_SYRCOND estimates the Skeel condition number of op(A) * op2(C)
- *> where op2 is determined by CMODE as follows
- *> CMODE = 1 op2(C) = C
- *> CMODE = 0 op2(C) = I
- *> CMODE = -1 op2(C) = inv(C)
- *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
- *> is computed by computing scaling factors R such that
- *> diag(R)*A*op2(C) is row equilibrated and computing the standard
- *> infinity-norm condition number.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is REAL array, dimension (LDAF,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by SSYTRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by SSYTRF.
- *> \endverbatim
- *>
- *> \param[in] CMODE
- *> \verbatim
- *> CMODE is INTEGER
- *> Determines op2(C) in the formula op(A) * op2(C) as follows:
- *> CMODE = 1 op2(C) = C
- *> CMODE = 0 op2(C) = I
- *> CMODE = -1 op2(C) = inv(C)
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is REAL array, dimension (N)
- *> The vector C in the formula op(A) * op2(C).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit.
- *> i > 0: The ith argument is invalid.
- *> \endverbatim
- *>
- *> \param[in] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (3*N).
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[in] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N).
- *> Workspace.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup realSYcomputational
- *
- * =====================================================================
- REAL FUNCTION SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV, CMODE,
- $ C, INFO, WORK, IWORK )
- *
- * -- LAPACK computational routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER N, LDA, LDAF, INFO, CMODE
- * ..
- * .. Array Arguments
- INTEGER IWORK( * ), IPIV( * )
- REAL A( LDA, * ), AF( LDAF, * ), WORK( * ), C( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- CHARACTER NORMIN
- INTEGER KASE, I, J
- REAL AINVNM, SMLNUM, TMP
- LOGICAL UP
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH
- EXTERNAL LSAME, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SLACN2, XERBLA, SSYTRS
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- SLA_SYRCOND = 0.0
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLA_SYRCOND', -INFO )
- RETURN
- END IF
- IF( N.EQ.0 ) THEN
- SLA_SYRCOND = 1.0
- RETURN
- END IF
- UP = .FALSE.
- IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
- *
- * Compute the equilibration matrix R such that
- * inv(R)*A*C has unit 1-norm.
- *
- IF ( UP ) THEN
- DO I = 1, N
- TMP = 0.0
- IF ( CMODE .EQ. 1 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( J, I ) * C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) * C( J ) )
- END DO
- ELSE IF ( CMODE .EQ. 0 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( J, I ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) )
- END DO
- ELSE
- DO J = 1, I
- TMP = TMP + ABS( A( J, I ) / C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) / C( J ) )
- END DO
- END IF
- WORK( 2*N+I ) = TMP
- END DO
- ELSE
- DO I = 1, N
- TMP = 0.0
- IF ( CMODE .EQ. 1 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( I, J ) * C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I ) * C( J ) )
- END DO
- ELSE IF ( CMODE .EQ. 0 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( I, J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I ) )
- END DO
- ELSE
- DO J = 1, I
- TMP = TMP + ABS( A( I, J) / C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I) / C( J ) )
- END DO
- END IF
- WORK( 2*N+I ) = TMP
- END DO
- ENDIF
- *
- * Estimate the norm of inv(op(A)).
- *
- SMLNUM = SLAMCH( 'Safe minimum' )
- AINVNM = 0.0
- NORMIN = 'N'
-
- KASE = 0
- 10 CONTINUE
- CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.2 ) THEN
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * WORK( 2*N+I )
- END DO
-
- IF ( UP ) THEN
- CALL SSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
- ELSE
- CALL SSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
- ENDIF
- *
- * Multiply by inv(C).
- *
- IF ( CMODE .EQ. 1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) / C( I )
- END DO
- ELSE IF ( CMODE .EQ. -1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- ELSE
- *
- * Multiply by inv(C**T).
- *
- IF ( CMODE .EQ. 1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) / C( I )
- END DO
- ELSE IF ( CMODE .EQ. -1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
-
- IF ( UP ) THEN
- CALL SSYTRS( 'U', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
- ELSE
- CALL SSYTRS( 'L', N, 1, AF, LDAF, IPIV, WORK, N, INFO )
- ENDIF
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * WORK( 2*N+I )
- END DO
- END IF
- *
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM .NE. 0.0 )
- $ SLA_SYRCOND = ( 1.0 / AINVNM )
- *
- RETURN
- *
- END
|