You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsb2st_kernels.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. *> \brief \b DSB2ST_KERNELS
  2. *
  3. * @generated from zhb2st_kernels.f, fortran z -> d, Wed Dec 7 08:22:39 2016
  4. *
  5. * =========== DOCUMENTATION ===========
  6. *
  7. * Online html documentation available at
  8. * http://www.netlib.org/lapack/explore-html/
  9. *
  10. *> \htmlonly
  11. *> Download DSB2ST_KERNELS + dependencies
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsb2st_kernels.f">
  13. *> [TGZ]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsb2st_kernels.f">
  15. *> [ZIP]</a>
  16. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsb2st_kernels.f">
  17. *> [TXT]</a>
  18. *> \endhtmlonly
  19. *
  20. * Definition:
  21. * ===========
  22. *
  23. * SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
  24. * ST, ED, SWEEP, N, NB, IB,
  25. * A, LDA, V, TAU, LDVT, WORK)
  26. *
  27. * IMPLICIT NONE
  28. *
  29. * .. Scalar Arguments ..
  30. * CHARACTER UPLO
  31. * LOGICAL WANTZ
  32. * INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
  33. * ..
  34. * .. Array Arguments ..
  35. * DOUBLE PRECISION A( LDA, * ), V( * ),
  36. * TAU( * ), WORK( * )
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DSB2ST_KERNELS is an internal routine used by the DSYTRD_SB2ST
  44. *> subroutine.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> \endverbatim
  54. *>
  55. *> \param[in] WANTZ
  56. *> \verbatim
  57. *> WANTZ is LOGICAL which indicate if Eigenvalue are requested or both
  58. *> Eigenvalue/Eigenvectors.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] TTYPE
  62. *> \verbatim
  63. *> TTYPE is INTEGER
  64. *> \endverbatim
  65. *>
  66. *> \param[in] ST
  67. *> \verbatim
  68. *> ST is INTEGER
  69. *> internal parameter for indices.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] ED
  73. *> \verbatim
  74. *> ED is INTEGER
  75. *> internal parameter for indices.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] SWEEP
  79. *> \verbatim
  80. *> SWEEP is INTEGER
  81. *> internal parameter for indices.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER. The order of the matrix A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] NB
  90. *> \verbatim
  91. *> NB is INTEGER. The size of the band.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] IB
  95. *> \verbatim
  96. *> IB is INTEGER.
  97. *> \endverbatim
  98. *>
  99. *> \param[in, out] A
  100. *> \verbatim
  101. *> A is DOUBLE PRECISION array. A pointer to the matrix A.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER. The leading dimension of the matrix A.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] V
  110. *> \verbatim
  111. *> V is DOUBLE PRECISION array, dimension 2*n if eigenvalues only are
  112. *> requested or to be queried for vectors.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] TAU
  116. *> \verbatim
  117. *> TAU is DOUBLE PRECISION array, dimension (2*n).
  118. *> The scalar factors of the Householder reflectors are stored
  119. *> in this array.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDVT
  123. *> \verbatim
  124. *> LDVT is INTEGER.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] WORK
  128. *> \verbatim
  129. *> WORK is DOUBLE PRECISION array. Workspace of size nb.
  130. *> \endverbatim
  131. *>
  132. *> \par Further Details:
  133. * =====================
  134. *>
  135. *> \verbatim
  136. *>
  137. *> Implemented by Azzam Haidar.
  138. *>
  139. *> All details are available on technical report, SC11, SC13 papers.
  140. *>
  141. *> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  142. *> Parallel reduction to condensed forms for symmetric eigenvalue problems
  143. *> using aggregated fine-grained and memory-aware kernels. In Proceedings
  144. *> of 2011 International Conference for High Performance Computing,
  145. *> Networking, Storage and Analysis (SC '11), New York, NY, USA,
  146. *> Article 8 , 11 pages.
  147. *> http://doi.acm.org/10.1145/2063384.2063394
  148. *>
  149. *> A. Haidar, J. Kurzak, P. Luszczek, 2013.
  150. *> An improved parallel singular value algorithm and its implementation
  151. *> for multicore hardware, In Proceedings of 2013 International Conference
  152. *> for High Performance Computing, Networking, Storage and Analysis (SC '13).
  153. *> Denver, Colorado, USA, 2013.
  154. *> Article 90, 12 pages.
  155. *> http://doi.acm.org/10.1145/2503210.2503292
  156. *>
  157. *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  158. *> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
  159. *> calculations based on fine-grained memory aware tasks.
  160. *> International Journal of High Performance Computing Applications.
  161. *> Volume 28 Issue 2, Pages 196-209, May 2014.
  162. *> http://hpc.sagepub.com/content/28/2/196
  163. *>
  164. *> \endverbatim
  165. *>
  166. * =====================================================================
  167. SUBROUTINE DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
  168. $ ST, ED, SWEEP, N, NB, IB,
  169. $ A, LDA, V, TAU, LDVT, WORK)
  170. *
  171. IMPLICIT NONE
  172. *
  173. * -- LAPACK computational routine (version 3.7.1) --
  174. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  175. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176. * June 2017
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER UPLO
  180. LOGICAL WANTZ
  181. INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
  182. * ..
  183. * .. Array Arguments ..
  184. DOUBLE PRECISION A( LDA, * ), V( * ),
  185. $ TAU( * ), WORK( * )
  186. * ..
  187. *
  188. * =====================================================================
  189. *
  190. * .. Parameters ..
  191. DOUBLE PRECISION ZERO, ONE
  192. PARAMETER ( ZERO = 0.0D+0,
  193. $ ONE = 1.0D+0 )
  194. * ..
  195. * .. Local Scalars ..
  196. LOGICAL UPPER
  197. INTEGER I, J1, J2, LM, LN, VPOS, TAUPOS,
  198. $ DPOS, OFDPOS, AJETER
  199. DOUBLE PRECISION CTMP
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL DLARFG, DLARFX, DLARFY
  203. * ..
  204. * .. Intrinsic Functions ..
  205. INTRINSIC MOD
  206. * .. External Functions ..
  207. LOGICAL LSAME
  208. EXTERNAL LSAME
  209. * ..
  210. * ..
  211. * .. Executable Statements ..
  212. *
  213. AJETER = IB + LDVT
  214. UPPER = LSAME( UPLO, 'U' )
  215. IF( UPPER ) THEN
  216. DPOS = 2 * NB + 1
  217. OFDPOS = 2 * NB
  218. ELSE
  219. DPOS = 1
  220. OFDPOS = 2
  221. ENDIF
  222. *
  223. * Upper case
  224. *
  225. IF( UPPER ) THEN
  226. *
  227. IF( WANTZ ) THEN
  228. VPOS = MOD( SWEEP-1, 2 ) * N + ST
  229. TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
  230. ELSE
  231. VPOS = MOD( SWEEP-1, 2 ) * N + ST
  232. TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
  233. ENDIF
  234. *
  235. IF( TTYPE.EQ.1 ) THEN
  236. LM = ED - ST + 1
  237. *
  238. V( VPOS ) = ONE
  239. DO 10 I = 1, LM-1
  240. V( VPOS+I ) = ( A( OFDPOS-I, ST+I ) )
  241. A( OFDPOS-I, ST+I ) = ZERO
  242. 10 CONTINUE
  243. CTMP = ( A( OFDPOS, ST ) )
  244. CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1,
  245. $ TAU( TAUPOS ) )
  246. A( OFDPOS, ST ) = CTMP
  247. *
  248. LM = ED - ST + 1
  249. CALL DLARFY( UPLO, LM, V( VPOS ), 1,
  250. $ ( TAU( TAUPOS ) ),
  251. $ A( DPOS, ST ), LDA-1, WORK)
  252. ENDIF
  253. *
  254. IF( TTYPE.EQ.3 ) THEN
  255. *
  256. LM = ED - ST + 1
  257. CALL DLARFY( UPLO, LM, V( VPOS ), 1,
  258. $ ( TAU( TAUPOS ) ),
  259. $ A( DPOS, ST ), LDA-1, WORK)
  260. ENDIF
  261. *
  262. IF( TTYPE.EQ.2 ) THEN
  263. J1 = ED+1
  264. J2 = MIN( ED+NB, N )
  265. LN = ED-ST+1
  266. LM = J2-J1+1
  267. IF( LM.GT.0) THEN
  268. CALL DLARFX( 'Left', LN, LM, V( VPOS ),
  269. $ ( TAU( TAUPOS ) ),
  270. $ A( DPOS-NB, J1 ), LDA-1, WORK)
  271. *
  272. IF( WANTZ ) THEN
  273. VPOS = MOD( SWEEP-1, 2 ) * N + J1
  274. TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
  275. ELSE
  276. VPOS = MOD( SWEEP-1, 2 ) * N + J1
  277. TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
  278. ENDIF
  279. *
  280. V( VPOS ) = ONE
  281. DO 30 I = 1, LM-1
  282. V( VPOS+I ) =
  283. $ ( A( DPOS-NB-I, J1+I ) )
  284. A( DPOS-NB-I, J1+I ) = ZERO
  285. 30 CONTINUE
  286. CTMP = ( A( DPOS-NB, J1 ) )
  287. CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
  288. A( DPOS-NB, J1 ) = CTMP
  289. *
  290. CALL DLARFX( 'Right', LN-1, LM, V( VPOS ),
  291. $ TAU( TAUPOS ),
  292. $ A( DPOS-NB+1, J1 ), LDA-1, WORK)
  293. ENDIF
  294. ENDIF
  295. *
  296. * Lower case
  297. *
  298. ELSE
  299. *
  300. IF( WANTZ ) THEN
  301. VPOS = MOD( SWEEP-1, 2 ) * N + ST
  302. TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
  303. ELSE
  304. VPOS = MOD( SWEEP-1, 2 ) * N + ST
  305. TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
  306. ENDIF
  307. *
  308. IF( TTYPE.EQ.1 ) THEN
  309. LM = ED - ST + 1
  310. *
  311. V( VPOS ) = ONE
  312. DO 20 I = 1, LM-1
  313. V( VPOS+I ) = A( OFDPOS+I, ST-1 )
  314. A( OFDPOS+I, ST-1 ) = ZERO
  315. 20 CONTINUE
  316. CALL DLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
  317. $ TAU( TAUPOS ) )
  318. *
  319. LM = ED - ST + 1
  320. *
  321. CALL DLARFY( UPLO, LM, V( VPOS ), 1,
  322. $ ( TAU( TAUPOS ) ),
  323. $ A( DPOS, ST ), LDA-1, WORK)
  324. ENDIF
  325. *
  326. IF( TTYPE.EQ.3 ) THEN
  327. LM = ED - ST + 1
  328. *
  329. CALL DLARFY( UPLO, LM, V( VPOS ), 1,
  330. $ ( TAU( TAUPOS ) ),
  331. $ A( DPOS, ST ), LDA-1, WORK)
  332. ENDIF
  333. *
  334. IF( TTYPE.EQ.2 ) THEN
  335. J1 = ED+1
  336. J2 = MIN( ED+NB, N )
  337. LN = ED-ST+1
  338. LM = J2-J1+1
  339. *
  340. IF( LM.GT.0) THEN
  341. CALL DLARFX( 'Right', LM, LN, V( VPOS ),
  342. $ TAU( TAUPOS ), A( DPOS+NB, ST ),
  343. $ LDA-1, WORK)
  344. *
  345. IF( WANTZ ) THEN
  346. VPOS = MOD( SWEEP-1, 2 ) * N + J1
  347. TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
  348. ELSE
  349. VPOS = MOD( SWEEP-1, 2 ) * N + J1
  350. TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
  351. ENDIF
  352. *
  353. V( VPOS ) = ONE
  354. DO 40 I = 1, LM-1
  355. V( VPOS+I ) = A( DPOS+NB+I, ST )
  356. A( DPOS+NB+I, ST ) = ZERO
  357. 40 CONTINUE
  358. CALL DLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
  359. $ TAU( TAUPOS ) )
  360. *
  361. CALL DLARFX( 'Left', LM, LN-1, V( VPOS ),
  362. $ ( TAU( TAUPOS ) ),
  363. $ A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
  364. ENDIF
  365. ENDIF
  366. ENDIF
  367. *
  368. RETURN
  369. *
  370. * END OF DSB2ST_KERNELS
  371. *
  372. END