You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatdf.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. *> \brief \b DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLATDF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatdf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatdf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatdf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  22. * JPIV )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IJOB, LDZ, N
  26. * DOUBLE PRECISION RDSCAL, RDSUM
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * ), JPIV( * )
  30. * DOUBLE PRECISION RHS( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLATDF uses the LU factorization of the n-by-n matrix Z computed by
  40. *> DGETC2 and computes a contribution to the reciprocal Dif-estimate
  41. *> by solving Z * x = b for x, and choosing the r.h.s. b such that
  42. *> the norm of x is as large as possible. On entry RHS = b holds the
  43. *> contribution from earlier solved sub-systems, and on return RHS = x.
  44. *>
  45. *> The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
  46. *> where P and Q are permutation matrices. L is lower triangular with
  47. *> unit diagonal elements and U is upper triangular.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] IJOB
  54. *> \verbatim
  55. *> IJOB is INTEGER
  56. *> IJOB = 2: First compute an approximative null-vector e
  57. *> of Z using DGECON, e is normalized and solve for
  58. *> Zx = +-e - f with the sign giving the greater value
  59. *> of 2-norm(x). About 5 times as expensive as Default.
  60. *> IJOB .ne. 2: Local look ahead strategy where all entries of
  61. *> the r.h.s. b is chosen as either +1 or -1 (Default).
  62. *> \endverbatim
  63. *>
  64. *> \param[in] N
  65. *> \verbatim
  66. *> N is INTEGER
  67. *> The number of columns of the matrix Z.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] Z
  71. *> \verbatim
  72. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  73. *> On entry, the LU part of the factorization of the n-by-n
  74. *> matrix Z computed by DGETC2: Z = P * L * U * Q
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDZ
  78. *> \verbatim
  79. *> LDZ is INTEGER
  80. *> The leading dimension of the array Z. LDA >= max(1, N).
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] RHS
  84. *> \verbatim
  85. *> RHS is DOUBLE PRECISION array, dimension (N)
  86. *> On entry, RHS contains contributions from other subsystems.
  87. *> On exit, RHS contains the solution of the subsystem with
  88. *> entries acoording to the value of IJOB (see above).
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] RDSUM
  92. *> \verbatim
  93. *> RDSUM is DOUBLE PRECISION
  94. *> On entry, the sum of squares of computed contributions to
  95. *> the Dif-estimate under computation by DTGSYL, where the
  96. *> scaling factor RDSCAL (see below) has been factored out.
  97. *> On exit, the corresponding sum of squares updated with the
  98. *> contributions from the current sub-system.
  99. *> If TRANS = 'T' RDSUM is not touched.
  100. *> NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] RDSCAL
  104. *> \verbatim
  105. *> RDSCAL is DOUBLE PRECISION
  106. *> On entry, scaling factor used to prevent overflow in RDSUM.
  107. *> On exit, RDSCAL is updated w.r.t. the current contributions
  108. *> in RDSUM.
  109. *> If TRANS = 'T', RDSCAL is not touched.
  110. *> NOTE: RDSCAL only makes sense when DTGSY2 is called by
  111. *> DTGSYL.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IPIV
  115. *> \verbatim
  116. *> IPIV is INTEGER array, dimension (N).
  117. *> The pivot indices; for 1 <= i <= N, row i of the
  118. *> matrix has been interchanged with row IPIV(i).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] JPIV
  122. *> \verbatim
  123. *> JPIV is INTEGER array, dimension (N).
  124. *> The pivot indices; for 1 <= j <= N, column j of the
  125. *> matrix has been interchanged with column JPIV(j).
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date June 2016
  137. *
  138. *> \ingroup doubleOTHERauxiliary
  139. *
  140. *> \par Further Details:
  141. * =====================
  142. *>
  143. *> This routine is a further developed implementation of algorithm
  144. *> BSOLVE in [1] using complete pivoting in the LU factorization.
  145. *
  146. *> \par Contributors:
  147. * ==================
  148. *>
  149. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  150. *> Umea University, S-901 87 Umea, Sweden.
  151. *
  152. *> \par References:
  153. * ================
  154. *>
  155. *> \verbatim
  156. *>
  157. *>
  158. *> [1] Bo Kagstrom and Lars Westin,
  159. *> Generalized Schur Methods with Condition Estimators for
  160. *> Solving the Generalized Sylvester Equation, IEEE Transactions
  161. *> on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
  162. *>
  163. *> [2] Peter Poromaa,
  164. *> On Efficient and Robust Estimators for the Separation
  165. *> between two Regular Matrix Pairs with Applications in
  166. *> Condition Estimation. Report IMINF-95.05, Departement of
  167. *> Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
  168. *> \endverbatim
  169. *>
  170. * =====================================================================
  171. SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  172. $ JPIV )
  173. *
  174. * -- LAPACK auxiliary routine (version 3.7.0) --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. * June 2016
  178. *
  179. * .. Scalar Arguments ..
  180. INTEGER IJOB, LDZ, N
  181. DOUBLE PRECISION RDSCAL, RDSUM
  182. * ..
  183. * .. Array Arguments ..
  184. INTEGER IPIV( * ), JPIV( * )
  185. DOUBLE PRECISION RHS( * ), Z( LDZ, * )
  186. * ..
  187. *
  188. * =====================================================================
  189. *
  190. * .. Parameters ..
  191. INTEGER MAXDIM
  192. PARAMETER ( MAXDIM = 8 )
  193. DOUBLE PRECISION ZERO, ONE
  194. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  195. * ..
  196. * .. Local Scalars ..
  197. INTEGER I, INFO, J, K
  198. DOUBLE PRECISION BM, BP, PMONE, SMINU, SPLUS, TEMP
  199. * ..
  200. * .. Local Arrays ..
  201. INTEGER IWORK( MAXDIM )
  202. DOUBLE PRECISION WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
  203. * ..
  204. * .. External Subroutines ..
  205. EXTERNAL DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
  206. $ DSCAL
  207. * ..
  208. * .. External Functions ..
  209. DOUBLE PRECISION DASUM, DDOT
  210. EXTERNAL DASUM, DDOT
  211. * ..
  212. * .. Intrinsic Functions ..
  213. INTRINSIC ABS, SQRT
  214. * ..
  215. * .. Executable Statements ..
  216. *
  217. IF( IJOB.NE.2 ) THEN
  218. *
  219. * Apply permutations IPIV to RHS
  220. *
  221. CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
  222. *
  223. * Solve for L-part choosing RHS either to +1 or -1.
  224. *
  225. PMONE = -ONE
  226. *
  227. DO 10 J = 1, N - 1
  228. BP = RHS( J ) + ONE
  229. BM = RHS( J ) - ONE
  230. SPLUS = ONE
  231. *
  232. * Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
  233. * SMIN computed more efficiently than in BSOLVE [1].
  234. *
  235. SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
  236. SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  237. SPLUS = SPLUS*RHS( J )
  238. IF( SPLUS.GT.SMINU ) THEN
  239. RHS( J ) = BP
  240. ELSE IF( SMINU.GT.SPLUS ) THEN
  241. RHS( J ) = BM
  242. ELSE
  243. *
  244. * In this case the updating sums are equal and we can
  245. * choose RHS(J) +1 or -1. The first time this happens
  246. * we choose -1, thereafter +1. This is a simple way to
  247. * get good estimates of matrices like Byers well-known
  248. * example (see [1]). (Not done in BSOLVE.)
  249. *
  250. RHS( J ) = RHS( J ) + PMONE
  251. PMONE = ONE
  252. END IF
  253. *
  254. * Compute the remaining r.h.s.
  255. *
  256. TEMP = -RHS( J )
  257. CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  258. *
  259. 10 CONTINUE
  260. *
  261. * Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
  262. * in BSOLVE and will hopefully give us a better estimate because
  263. * any ill-conditioning of the original matrix is transfered to U
  264. * and not to L. U(N, N) is an approximation to sigma_min(LU).
  265. *
  266. CALL DCOPY( N-1, RHS, 1, XP, 1 )
  267. XP( N ) = RHS( N ) + ONE
  268. RHS( N ) = RHS( N ) - ONE
  269. SPLUS = ZERO
  270. SMINU = ZERO
  271. DO 30 I = N, 1, -1
  272. TEMP = ONE / Z( I, I )
  273. XP( I ) = XP( I )*TEMP
  274. RHS( I ) = RHS( I )*TEMP
  275. DO 20 K = I + 1, N
  276. XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
  277. RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
  278. 20 CONTINUE
  279. SPLUS = SPLUS + ABS( XP( I ) )
  280. SMINU = SMINU + ABS( RHS( I ) )
  281. 30 CONTINUE
  282. IF( SPLUS.GT.SMINU )
  283. $ CALL DCOPY( N, XP, 1, RHS, 1 )
  284. *
  285. * Apply the permutations JPIV to the computed solution (RHS)
  286. *
  287. CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
  288. *
  289. * Compute the sum of squares
  290. *
  291. CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  292. *
  293. ELSE
  294. *
  295. * IJOB = 2, Compute approximate nullvector XM of Z
  296. *
  297. CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
  298. CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
  299. *
  300. * Compute RHS
  301. *
  302. CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
  303. TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
  304. CALL DSCAL( N, TEMP, XM, 1 )
  305. CALL DCOPY( N, XM, 1, XP, 1 )
  306. CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
  307. CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
  308. CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
  309. CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
  310. IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
  311. $ CALL DCOPY( N, XP, 1, RHS, 1 )
  312. *
  313. * Compute the sum of squares
  314. *
  315. CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  316. *
  317. END IF
  318. *
  319. RETURN
  320. *
  321. * End of DLATDF
  322. *
  323. END