You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqps.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. *> \brief \b DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAQPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  22. * VN2, AUXV, F, LDF )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER KB, LDA, LDF, M, N, NB, OFFSET
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER JPVT( * )
  29. * DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
  30. * $ VN1( * ), VN2( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLAQPS computes a step of QR factorization with column pivoting
  40. *> of a real M-by-N matrix A by using Blas-3. It tries to factorize
  41. *> NB columns from A starting from the row OFFSET+1, and updates all
  42. *> of the matrix with Blas-3 xGEMM.
  43. *>
  44. *> In some cases, due to catastrophic cancellations, it cannot
  45. *> factorize NB columns. Hence, the actual number of factorized
  46. *> columns is returned in KB.
  47. *>
  48. *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] M
  55. *> \verbatim
  56. *> M is INTEGER
  57. *> The number of rows of the matrix A. M >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The number of columns of the matrix A. N >= 0
  64. *> \endverbatim
  65. *>
  66. *> \param[in] OFFSET
  67. *> \verbatim
  68. *> OFFSET is INTEGER
  69. *> The number of rows of A that have been factorized in
  70. *> previous steps.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NB
  74. *> \verbatim
  75. *> NB is INTEGER
  76. *> The number of columns to factorize.
  77. *> \endverbatim
  78. *>
  79. *> \param[out] KB
  80. *> \verbatim
  81. *> KB is INTEGER
  82. *> The number of columns actually factorized.
  83. *> \endverbatim
  84. *>
  85. *> \param[in,out] A
  86. *> \verbatim
  87. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  88. *> On entry, the M-by-N matrix A.
  89. *> On exit, block A(OFFSET+1:M,1:KB) is the triangular
  90. *> factor obtained and block A(1:OFFSET,1:N) has been
  91. *> accordingly pivoted, but no factorized.
  92. *> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
  93. *> been updated.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDA
  97. *> \verbatim
  98. *> LDA is INTEGER
  99. *> The leading dimension of the array A. LDA >= max(1,M).
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] JPVT
  103. *> \verbatim
  104. *> JPVT is INTEGER array, dimension (N)
  105. *> JPVT(I) = K <==> Column K of the full matrix A has been
  106. *> permuted into position I in AP.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] TAU
  110. *> \verbatim
  111. *> TAU is DOUBLE PRECISION array, dimension (KB)
  112. *> The scalar factors of the elementary reflectors.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] VN1
  116. *> \verbatim
  117. *> VN1 is DOUBLE PRECISION array, dimension (N)
  118. *> The vector with the partial column norms.
  119. *> \endverbatim
  120. *>
  121. *> \param[in,out] VN2
  122. *> \verbatim
  123. *> VN2 is DOUBLE PRECISION array, dimension (N)
  124. *> The vector with the exact column norms.
  125. *> \endverbatim
  126. *>
  127. *> \param[in,out] AUXV
  128. *> \verbatim
  129. *> AUXV is DOUBLE PRECISION array, dimension (NB)
  130. *> Auxiliar vector.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] F
  134. *> \verbatim
  135. *> F is DOUBLE PRECISION array, dimension (LDF,NB)
  136. *> Matrix F**T = L*Y**T*A.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] LDF
  140. *> \verbatim
  141. *> LDF is INTEGER
  142. *> The leading dimension of the array F. LDF >= max(1,N).
  143. *> \endverbatim
  144. *
  145. * Authors:
  146. * ========
  147. *
  148. *> \author Univ. of Tennessee
  149. *> \author Univ. of California Berkeley
  150. *> \author Univ. of Colorado Denver
  151. *> \author NAG Ltd.
  152. *
  153. *> \date December 2016
  154. *
  155. *> \ingroup doubleOTHERauxiliary
  156. *
  157. *> \par Contributors:
  158. * ==================
  159. *>
  160. *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
  161. *> X. Sun, Computer Science Dept., Duke University, USA
  162. *> \n
  163. *> Partial column norm updating strategy modified on April 2011
  164. *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
  165. *> University of Zagreb, Croatia.
  166. *
  167. *> \par References:
  168. * ================
  169. *>
  170. *> LAPACK Working Note 176
  171. *
  172. *> \htmlonly
  173. *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
  174. *> \endhtmlonly
  175. *
  176. * =====================================================================
  177. SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
  178. $ VN2, AUXV, F, LDF )
  179. *
  180. * -- LAPACK auxiliary routine (version 3.7.0) --
  181. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  182. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183. * December 2016
  184. *
  185. * .. Scalar Arguments ..
  186. INTEGER KB, LDA, LDF, M, N, NB, OFFSET
  187. * ..
  188. * .. Array Arguments ..
  189. INTEGER JPVT( * )
  190. DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
  191. $ VN1( * ), VN2( * )
  192. * ..
  193. *
  194. * =====================================================================
  195. *
  196. * .. Parameters ..
  197. DOUBLE PRECISION ZERO, ONE
  198. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  199. * ..
  200. * .. Local Scalars ..
  201. INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK
  202. DOUBLE PRECISION AKK, TEMP, TEMP2, TOL3Z
  203. * ..
  204. * .. External Subroutines ..
  205. EXTERNAL DGEMM, DGEMV, DLARFG, DSWAP
  206. * ..
  207. * .. Intrinsic Functions ..
  208. INTRINSIC ABS, DBLE, MAX, MIN, NINT, SQRT
  209. * ..
  210. * .. External Functions ..
  211. INTEGER IDAMAX
  212. DOUBLE PRECISION DLAMCH, DNRM2
  213. EXTERNAL IDAMAX, DLAMCH, DNRM2
  214. * ..
  215. * .. Executable Statements ..
  216. *
  217. LASTRK = MIN( M, N+OFFSET )
  218. LSTICC = 0
  219. K = 0
  220. TOL3Z = SQRT(DLAMCH('Epsilon'))
  221. *
  222. * Beginning of while loop.
  223. *
  224. 10 CONTINUE
  225. IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
  226. K = K + 1
  227. RK = OFFSET + K
  228. *
  229. * Determine ith pivot column and swap if necessary
  230. *
  231. PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
  232. IF( PVT.NE.K ) THEN
  233. CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
  234. CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
  235. ITEMP = JPVT( PVT )
  236. JPVT( PVT ) = JPVT( K )
  237. JPVT( K ) = ITEMP
  238. VN1( PVT ) = VN1( K )
  239. VN2( PVT ) = VN2( K )
  240. END IF
  241. *
  242. * Apply previous Householder reflectors to column K:
  243. * A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
  244. *
  245. IF( K.GT.1 ) THEN
  246. CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ),
  247. $ LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
  248. END IF
  249. *
  250. * Generate elementary reflector H(k).
  251. *
  252. IF( RK.LT.M ) THEN
  253. CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
  254. ELSE
  255. CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
  256. END IF
  257. *
  258. AKK = A( RK, K )
  259. A( RK, K ) = ONE
  260. *
  261. * Compute Kth column of F:
  262. *
  263. * Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
  264. *
  265. IF( K.LT.N ) THEN
  266. CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ),
  267. $ A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO,
  268. $ F( K+1, K ), 1 )
  269. END IF
  270. *
  271. * Padding F(1:K,K) with zeros.
  272. *
  273. DO 20 J = 1, K
  274. F( J, K ) = ZERO
  275. 20 CONTINUE
  276. *
  277. * Incremental updating of F:
  278. * F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
  279. * *A(RK:M,K).
  280. *
  281. IF( K.GT.1 ) THEN
  282. CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ),
  283. $ LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
  284. *
  285. CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF,
  286. $ AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
  287. END IF
  288. *
  289. * Update the current row of A:
  290. * A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
  291. *
  292. IF( K.LT.N ) THEN
  293. CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF,
  294. $ A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
  295. END IF
  296. *
  297. * Update partial column norms.
  298. *
  299. IF( RK.LT.LASTRK ) THEN
  300. DO 30 J = K + 1, N
  301. IF( VN1( J ).NE.ZERO ) THEN
  302. *
  303. * NOTE: The following 4 lines follow from the analysis in
  304. * Lapack Working Note 176.
  305. *
  306. TEMP = ABS( A( RK, J ) ) / VN1( J )
  307. TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
  308. TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
  309. IF( TEMP2 .LE. TOL3Z ) THEN
  310. VN2( J ) = DBLE( LSTICC )
  311. LSTICC = J
  312. ELSE
  313. VN1( J ) = VN1( J )*SQRT( TEMP )
  314. END IF
  315. END IF
  316. 30 CONTINUE
  317. END IF
  318. *
  319. A( RK, K ) = AKK
  320. *
  321. * End of while loop.
  322. *
  323. GO TO 10
  324. END IF
  325. KB = K
  326. RK = OFFSET + KB
  327. *
  328. * Apply the block reflector to the rest of the matrix:
  329. * A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
  330. * A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
  331. *
  332. IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
  333. CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE,
  334. $ A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE,
  335. $ A( RK+1, KB+1 ), LDA )
  336. END IF
  337. *
  338. * Recomputation of difficult columns.
  339. *
  340. 40 CONTINUE
  341. IF( LSTICC.GT.0 ) THEN
  342. ITEMP = NINT( VN2( LSTICC ) )
  343. VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
  344. *
  345. * NOTE: The computation of VN1( LSTICC ) relies on the fact that
  346. * SNRM2 does not fail on vectors with norm below the value of
  347. * SQRT(DLAMCH('S'))
  348. *
  349. VN2( LSTICC ) = VN1( LSTICC )
  350. LSTICC = ITEMP
  351. GO TO 40
  352. END IF
  353. *
  354. RETURN
  355. *
  356. * End of DLAQPS
  357. *
  358. END