You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlanhs.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. *> \brief \b DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANHS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanhs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanhs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanhs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLANHS returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> Hessenberg matrix A.
  40. *> \endverbatim
  41. *>
  42. *> \return DLANHS
  43. *> \verbatim
  44. *>
  45. *> DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in DLANHS as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0. When N = 0, DLANHS is
  73. *> set to zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] A
  77. *> \verbatim
  78. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  79. *> The n by n upper Hessenberg matrix A; the part of A below the
  80. *> first sub-diagonal is not referenced.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(N,1).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  92. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  93. *> referenced.
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup doubleOTHERauxiliary
  107. *
  108. * =====================================================================
  109. DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
  110. *
  111. * -- LAPACK auxiliary routine (version 3.7.0) --
  112. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  113. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  114. * December 2016
  115. *
  116. * .. Scalar Arguments ..
  117. CHARACTER NORM
  118. INTEGER LDA, N
  119. * ..
  120. * .. Array Arguments ..
  121. DOUBLE PRECISION A( LDA, * ), WORK( * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Parameters ..
  127. DOUBLE PRECISION ONE, ZERO
  128. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  129. * ..
  130. * .. Local Scalars ..
  131. INTEGER I, J
  132. DOUBLE PRECISION SCALE, SUM, VALUE
  133. * ..
  134. * .. External Subroutines ..
  135. EXTERNAL DLASSQ
  136. * ..
  137. * .. External Functions ..
  138. LOGICAL LSAME, DISNAN
  139. EXTERNAL LSAME, DISNAN
  140. * ..
  141. * .. Intrinsic Functions ..
  142. INTRINSIC ABS, MIN, SQRT
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. IF( N.EQ.0 ) THEN
  147. VALUE = ZERO
  148. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  149. *
  150. * Find max(abs(A(i,j))).
  151. *
  152. VALUE = ZERO
  153. DO 20 J = 1, N
  154. DO 10 I = 1, MIN( N, J+1 )
  155. SUM = ABS( A( I, J ) )
  156. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  157. 10 CONTINUE
  158. 20 CONTINUE
  159. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  160. *
  161. * Find norm1(A).
  162. *
  163. VALUE = ZERO
  164. DO 40 J = 1, N
  165. SUM = ZERO
  166. DO 30 I = 1, MIN( N, J+1 )
  167. SUM = SUM + ABS( A( I, J ) )
  168. 30 CONTINUE
  169. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  170. 40 CONTINUE
  171. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  172. *
  173. * Find normI(A).
  174. *
  175. DO 50 I = 1, N
  176. WORK( I ) = ZERO
  177. 50 CONTINUE
  178. DO 70 J = 1, N
  179. DO 60 I = 1, MIN( N, J+1 )
  180. WORK( I ) = WORK( I ) + ABS( A( I, J ) )
  181. 60 CONTINUE
  182. 70 CONTINUE
  183. VALUE = ZERO
  184. DO 80 I = 1, N
  185. SUM = WORK( I )
  186. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  187. 80 CONTINUE
  188. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  189. *
  190. * Find normF(A).
  191. *
  192. SCALE = ZERO
  193. SUM = ONE
  194. DO 90 J = 1, N
  195. CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
  196. 90 CONTINUE
  197. VALUE = SCALE*SQRT( SUM )
  198. END IF
  199. *
  200. DLANHS = VALUE
  201. RETURN
  202. *
  203. * End of DLANHS
  204. *
  205. END