You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgetsls.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. * Definition:
  2. * ===========
  3. *
  4. * SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  5. * $ WORK, LWORK, INFO )
  6. *
  7. * .. Scalar Arguments ..
  8. * CHARACTER TRANS
  9. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  10. * ..
  11. * .. Array Arguments ..
  12. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  13. * ..
  14. *
  15. *
  16. *> \par Purpose:
  17. * =============
  18. *>
  19. *> \verbatim
  20. *>
  21. *> DGETSLS solves overdetermined or underdetermined real linear systems
  22. *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
  23. *> factorization of A. It is assumed that A has full rank.
  24. *>
  25. *>
  26. *>
  27. *> The following options are provided:
  28. *>
  29. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  30. *> an overdetermined system, i.e., solve the least squares problem
  31. *> minimize || B - A*X ||.
  32. *>
  33. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  34. *> an underdetermined system A * X = B.
  35. *>
  36. *> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
  37. *> an undetermined system A**T * X = B.
  38. *>
  39. *> 4. If TRANS = 'T' and m < n: find the least squares solution of
  40. *> an overdetermined system, i.e., solve the least squares problem
  41. *> minimize || B - A**T * X ||.
  42. *>
  43. *> Several right hand side vectors b and solution vectors x can be
  44. *> handled in a single call; they are stored as the columns of the
  45. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  46. *> matrix X.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> = 'N': the linear system involves A;
  56. *> = 'T': the linear system involves A**T.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] M
  60. *> \verbatim
  61. *> M is INTEGER
  62. *> The number of rows of the matrix A. M >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The number of columns of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] NRHS
  72. *> \verbatim
  73. *> NRHS is INTEGER
  74. *> The number of right hand sides, i.e., the number of
  75. *> columns of the matrices B and X. NRHS >=0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in,out] A
  79. *> \verbatim
  80. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  81. *> On entry, the M-by-N matrix A.
  82. *> On exit,
  83. *> A is overwritten by details of its QR or LQ
  84. *> factorization as returned by DGEQR or DGELQ.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDA
  88. *> \verbatim
  89. *> LDA is INTEGER
  90. *> The leading dimension of the array A. LDA >= max(1,M).
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] B
  94. *> \verbatim
  95. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  96. *> On entry, the matrix B of right hand side vectors, stored
  97. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  98. *> if TRANS = 'T'.
  99. *> On exit, if INFO = 0, B is overwritten by the solution
  100. *> vectors, stored columnwise:
  101. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  102. *> squares solution vectors.
  103. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  104. *> minimum norm solution vectors;
  105. *> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  106. *> minimum norm solution vectors;
  107. *> if TRANS = 'T' and m < n, rows 1 to M of B contain the
  108. *> least squares solution vectors.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDB
  112. *> \verbatim
  113. *> LDB is INTEGER
  114. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  120. *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  121. *> or optimal, if query was assumed) LWORK.
  122. *> See LWORK for details.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LWORK
  126. *> \verbatim
  127. *> LWORK is INTEGER
  128. *> The dimension of the array WORK.
  129. *> If LWORK = -1 or -2, then a workspace query is assumed.
  130. *> If LWORK = -1, the routine calculates optimal size of WORK for the
  131. *> optimal performance and returns this value in WORK(1).
  132. *> If LWORK = -2, the routine calculates minimal size of WORK and
  133. *> returns this value in WORK(1).
  134. *> \endverbatim
  135. *>
  136. *> \param[out] INFO
  137. *> \verbatim
  138. *> INFO is INTEGER
  139. *> = 0: successful exit
  140. *> < 0: if INFO = -i, the i-th argument had an illegal value
  141. *> > 0: if INFO = i, the i-th diagonal element of the
  142. *> triangular factor of A is zero, so that A does not have
  143. *> full rank; the least squares solution could not be
  144. *> computed.
  145. *> \endverbatim
  146. *
  147. * Authors:
  148. * ========
  149. *
  150. *> \author Univ. of Tennessee
  151. *> \author Univ. of California Berkeley
  152. *> \author Univ. of Colorado Denver
  153. *> \author NAG Ltd.
  154. *
  155. *> \date June 2017
  156. *
  157. *> \ingroup doubleGEsolve
  158. *
  159. * =====================================================================
  160. SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161. $ WORK, LWORK, INFO )
  162. *
  163. * -- LAPACK driver routine (version 3.7.1) --
  164. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  165. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166. * June 2017
  167. *
  168. * .. Scalar Arguments ..
  169. CHARACTER TRANS
  170. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  171. * ..
  172. * .. Array Arguments ..
  173. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  174. *
  175. * ..
  176. *
  177. * =====================================================================
  178. *
  179. * .. Parameters ..
  180. DOUBLE PRECISION ZERO, ONE
  181. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  182. * ..
  183. * .. Local Scalars ..
  184. LOGICAL LQUERY, TRAN
  185. INTEGER I, IASCL, IBSCL, J, MINMN, MAXMN, BROW,
  186. $ SCLLEN, MNK, TSZO, TSZM, LWO, LWM, LW1, LW2,
  187. $ WSIZEO, WSIZEM, INFO2
  188. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
  189. * ..
  190. * .. External Functions ..
  191. LOGICAL LSAME
  192. INTEGER ILAENV
  193. DOUBLE PRECISION DLAMCH, DLANGE
  194. EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  195. * ..
  196. * .. External Subroutines ..
  197. EXTERNAL DGEQR, DGEMQR, DLASCL, DLASET,
  198. $ DTRTRS, XERBLA, DGELQ, DGEMLQ
  199. * ..
  200. * .. Intrinsic Functions ..
  201. INTRINSIC DBLE, MAX, MIN, INT
  202. * ..
  203. * .. Executable Statements ..
  204. *
  205. * Test the input arguments.
  206. *
  207. INFO = 0
  208. MINMN = MIN( M, N )
  209. MAXMN = MAX( M, N )
  210. MNK = MAX( MINMN, NRHS )
  211. TRAN = LSAME( TRANS, 'T' )
  212. *
  213. LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  214. IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  215. $ LSAME( TRANS, 'T' ) ) ) THEN
  216. INFO = -1
  217. ELSE IF( M.LT.0 ) THEN
  218. INFO = -2
  219. ELSE IF( N.LT.0 ) THEN
  220. INFO = -3
  221. ELSE IF( NRHS.LT.0 ) THEN
  222. INFO = -4
  223. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  224. INFO = -6
  225. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  226. INFO = -8
  227. END IF
  228. *
  229. IF( INFO.EQ.0 ) THEN
  230. *
  231. * Determine the block size and minimum LWORK
  232. *
  233. IF( M.GE.N ) THEN
  234. CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  235. TSZO = INT( TQ( 1 ) )
  236. LWO = INT( WORKQ( 1 ) )
  237. CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  238. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  239. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  240. CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  241. TSZM = INT( TQ( 1 ) )
  242. LWM = INT( WORKQ( 1 ) )
  243. CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  244. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  245. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  246. WSIZEO = TSZO + LWO
  247. WSIZEM = TSZM + LWM
  248. ELSE
  249. CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  250. TSZO = INT( TQ( 1 ) )
  251. LWO = INT( WORKQ( 1 ) )
  252. CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  253. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  254. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  255. CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  256. TSZM = INT( TQ( 1 ) )
  257. LWM = INT( WORKQ( 1 ) )
  258. CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  259. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  260. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  261. WSIZEO = TSZO + LWO
  262. WSIZEM = TSZM + LWM
  263. END IF
  264. *
  265. IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  266. INFO = -10
  267. END IF
  268. *
  269. END IF
  270. *
  271. IF( INFO.NE.0 ) THEN
  272. CALL XERBLA( 'DGETSLS', -INFO )
  273. WORK( 1 ) = DBLE( WSIZEO )
  274. RETURN
  275. END IF
  276. IF( LQUERY ) THEN
  277. IF( LWORK.EQ.-1 ) WORK( 1 ) = REAL( WSIZEO )
  278. IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
  279. RETURN
  280. END IF
  281. IF( LWORK.LT.WSIZEO ) THEN
  282. LW1 = TSZM
  283. LW2 = LWM
  284. ELSE
  285. LW1 = TSZO
  286. LW2 = LWO
  287. END IF
  288. *
  289. * Quick return if possible
  290. *
  291. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  292. CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
  293. $ B, LDB )
  294. RETURN
  295. END IF
  296. *
  297. * Get machine parameters
  298. *
  299. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  300. BIGNUM = ONE / SMLNUM
  301. CALL DLABAD( SMLNUM, BIGNUM )
  302. *
  303. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  304. *
  305. ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  306. IASCL = 0
  307. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  308. *
  309. * Scale matrix norm up to SMLNUM
  310. *
  311. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  312. IASCL = 1
  313. ELSE IF( ANRM.GT.BIGNUM ) THEN
  314. *
  315. * Scale matrix norm down to BIGNUM
  316. *
  317. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  318. IASCL = 2
  319. ELSE IF( ANRM.EQ.ZERO ) THEN
  320. *
  321. * Matrix all zero. Return zero solution.
  322. *
  323. CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
  324. GO TO 50
  325. END IF
  326. *
  327. BROW = M
  328. IF ( TRAN ) THEN
  329. BROW = N
  330. END IF
  331. BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
  332. IBSCL = 0
  333. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  334. *
  335. * Scale matrix norm up to SMLNUM
  336. *
  337. CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  338. $ INFO )
  339. IBSCL = 1
  340. ELSE IF( BNRM.GT.BIGNUM ) THEN
  341. *
  342. * Scale matrix norm down to BIGNUM
  343. *
  344. CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  345. $ INFO )
  346. IBSCL = 2
  347. END IF
  348. *
  349. IF ( M.GE.N ) THEN
  350. *
  351. * compute QR factorization of A
  352. *
  353. CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  354. $ WORK( 1 ), LW2, INFO )
  355. IF ( .NOT.TRAN ) THEN
  356. *
  357. * Least-Squares Problem min || A * X - B ||
  358. *
  359. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  360. *
  361. CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
  362. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  363. $ INFO )
  364. *
  365. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  366. *
  367. CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
  368. $ A, LDA, B, LDB, INFO )
  369. IF( INFO.GT.0 ) THEN
  370. RETURN
  371. END IF
  372. SCLLEN = N
  373. ELSE
  374. *
  375. * Overdetermined system of equations A**T * X = B
  376. *
  377. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  378. *
  379. CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
  380. $ A, LDA, B, LDB, INFO )
  381. *
  382. IF( INFO.GT.0 ) THEN
  383. RETURN
  384. END IF
  385. *
  386. * B(N+1:M,1:NRHS) = ZERO
  387. *
  388. DO 20 J = 1, NRHS
  389. DO 10 I = N + 1, M
  390. B( I, J ) = ZERO
  391. 10 CONTINUE
  392. 20 CONTINUE
  393. *
  394. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  395. *
  396. CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  397. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  398. $ INFO )
  399. *
  400. SCLLEN = M
  401. *
  402. END IF
  403. *
  404. ELSE
  405. *
  406. * Compute LQ factorization of A
  407. *
  408. CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  409. $ WORK( 1 ), LW2, INFO )
  410. *
  411. * workspace at least M, optimally M*NB.
  412. *
  413. IF( .NOT.TRAN ) THEN
  414. *
  415. * underdetermined system of equations A * X = B
  416. *
  417. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  418. *
  419. CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
  420. $ A, LDA, B, LDB, INFO )
  421. *
  422. IF( INFO.GT.0 ) THEN
  423. RETURN
  424. END IF
  425. *
  426. * B(M+1:N,1:NRHS) = 0
  427. *
  428. DO 40 J = 1, NRHS
  429. DO 30 I = M + 1, N
  430. B( I, J ) = ZERO
  431. 30 CONTINUE
  432. 40 CONTINUE
  433. *
  434. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  435. *
  436. CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
  437. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  438. $ INFO )
  439. *
  440. * workspace at least NRHS, optimally NRHS*NB
  441. *
  442. SCLLEN = N
  443. *
  444. ELSE
  445. *
  446. * overdetermined system min || A**T * X - B ||
  447. *
  448. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  449. *
  450. CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  451. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  452. $ INFO )
  453. *
  454. * workspace at least NRHS, optimally NRHS*NB
  455. *
  456. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  457. *
  458. CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  459. $ A, LDA, B, LDB, INFO )
  460. *
  461. IF( INFO.GT.0 ) THEN
  462. RETURN
  463. END IF
  464. *
  465. SCLLEN = M
  466. *
  467. END IF
  468. *
  469. END IF
  470. *
  471. * Undo scaling
  472. *
  473. IF( IASCL.EQ.1 ) THEN
  474. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  475. $ INFO )
  476. ELSE IF( IASCL.EQ.2 ) THEN
  477. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  478. $ INFO )
  479. END IF
  480. IF( IBSCL.EQ.1 ) THEN
  481. CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  482. $ INFO )
  483. ELSE IF( IBSCL.EQ.2 ) THEN
  484. CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  485. $ INFO )
  486. END IF
  487. *
  488. 50 CONTINUE
  489. WORK( 1 ) = DBLE( TSZO + LWO )
  490. RETURN
  491. *
  492. * End of DGETSLS
  493. *
  494. END