You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunm22.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. *> \brief \b CUNM22 multiplies a general matrix by a banded unitary matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNM22 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunm22.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunm22.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunm22.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  22. * $ WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX Q( LDQ, * ), C( LDC, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose
  33. * ============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CUNM22 overwrites the general complex M-by-N matrix C with
  38. *>
  39. *> SIDE = 'L' SIDE = 'R'
  40. *> TRANS = 'N': Q * C C * Q
  41. *> TRANS = 'C': Q**H * C C * Q**H
  42. *>
  43. *> where Q is a complex unitary matrix of order NQ, with NQ = M if
  44. *> SIDE = 'L' and NQ = N if SIDE = 'R'.
  45. *> The unitary matrix Q processes a 2-by-2 block structure
  46. *>
  47. *> [ Q11 Q12 ]
  48. *> Q = [ ]
  49. *> [ Q21 Q22 ],
  50. *>
  51. *> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
  52. *> N2-by-N2 upper triangular matrix.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] SIDE
  59. *> \verbatim
  60. *> SIDE is CHARACTER*1
  61. *> = 'L': apply Q or Q**H from the Left;
  62. *> = 'R': apply Q or Q**H from the Right.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> = 'N': apply Q (No transpose);
  69. *> = 'C': apply Q**H (Conjugate transpose).
  70. *> \endverbatim
  71. *>
  72. *> \param[in] M
  73. *> \verbatim
  74. *> M is INTEGER
  75. *> The number of rows of the matrix C. M >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The number of columns of the matrix C. N >= 0.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N1
  85. *> \param[in] N2
  86. *> \verbatim
  87. *> N1 is INTEGER
  88. *> N2 is INTEGER
  89. *> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
  90. *> The following requirement must be satisfied:
  91. *> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] Q
  95. *> \verbatim
  96. *> Q is COMPLEX array, dimension
  97. *> (LDQ,M) if SIDE = 'L'
  98. *> (LDQ,N) if SIDE = 'R'
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDQ
  102. *> \verbatim
  103. *> LDQ is INTEGER
  104. *> The leading dimension of the array Q.
  105. *> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  106. *> \endverbatim
  107. *>
  108. *> \param[in,out] C
  109. *> \verbatim
  110. *> C is COMPLEX array, dimension (LDC,N)
  111. *> On entry, the M-by-N matrix C.
  112. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDC
  116. *> \verbatim
  117. *> LDC is INTEGER
  118. *> The leading dimension of the array C. LDC >= max(1,M).
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  124. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LWORK
  128. *> \verbatim
  129. *> LWORK is INTEGER
  130. *> The dimension of the array WORK.
  131. *> If SIDE = 'L', LWORK >= max(1,N);
  132. *> if SIDE = 'R', LWORK >= max(1,M).
  133. *> For optimum performance LWORK >= M*N.
  134. *>
  135. *> If LWORK = -1, then a workspace query is assumed; the routine
  136. *> only calculates the optimal size of the WORK array, returns
  137. *> this value as the first entry of the WORK array, and no error
  138. *> message related to LWORK is issued by XERBLA.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] INFO
  142. *> \verbatim
  143. *> INFO is INTEGER
  144. *> = 0: successful exit
  145. *> < 0: if INFO = -i, the i-th argument had an illegal value
  146. *> \endverbatim
  147. *
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \date January 2015
  158. *
  159. *> \ingroup complexOTHERcomputational
  160. *
  161. * =====================================================================
  162. SUBROUTINE CUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  163. $ WORK, LWORK, INFO )
  164. *
  165. * -- LAPACK computational routine (version 3.7.1) --
  166. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  167. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  168. * January 2015
  169. *
  170. IMPLICIT NONE
  171. *
  172. * .. Scalar Arguments ..
  173. CHARACTER SIDE, TRANS
  174. INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  175. * ..
  176. * .. Array Arguments ..
  177. COMPLEX Q( LDQ, * ), C( LDC, * ), WORK( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. COMPLEX ONE
  184. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  185. *
  186. * .. Local Scalars ..
  187. LOGICAL LEFT, LQUERY, NOTRAN
  188. INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  189. * ..
  190. * .. External Functions ..
  191. LOGICAL LSAME
  192. EXTERNAL LSAME
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL CGEMM, CLACPY, CTRMM, XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC CMPLX, MAX, MIN
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. * Test the input arguments
  203. *
  204. INFO = 0
  205. LEFT = LSAME( SIDE, 'L' )
  206. NOTRAN = LSAME( TRANS, 'N' )
  207. LQUERY = ( LWORK.EQ.-1 )
  208. *
  209. * NQ is the order of Q;
  210. * NW is the minimum dimension of WORK.
  211. *
  212. IF( LEFT ) THEN
  213. NQ = M
  214. ELSE
  215. NQ = N
  216. END IF
  217. NW = NQ
  218. IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  219. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  220. INFO = -1
  221. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
  222. $ THEN
  223. INFO = -2
  224. ELSE IF( M.LT.0 ) THEN
  225. INFO = -3
  226. ELSE IF( N.LT.0 ) THEN
  227. INFO = -4
  228. ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  229. INFO = -5
  230. ELSE IF( N2.LT.0 ) THEN
  231. INFO = -6
  232. ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  233. INFO = -8
  234. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  235. INFO = -10
  236. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  237. INFO = -12
  238. END IF
  239. *
  240. IF( INFO.EQ.0 ) THEN
  241. LWKOPT = M*N
  242. WORK( 1 ) = CMPLX( LWKOPT )
  243. END IF
  244. *
  245. IF( INFO.NE.0 ) THEN
  246. CALL XERBLA( 'CUNM22', -INFO )
  247. RETURN
  248. ELSE IF( LQUERY ) THEN
  249. RETURN
  250. END IF
  251. *
  252. * Quick return if possible
  253. *
  254. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  255. WORK( 1 ) = 1
  256. RETURN
  257. END IF
  258. *
  259. * Degenerate cases (N1 = 0 or N2 = 0) are handled using CTRMM.
  260. *
  261. IF( N1.EQ.0 ) THEN
  262. CALL CTRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  263. $ Q, LDQ, C, LDC )
  264. WORK( 1 ) = ONE
  265. RETURN
  266. ELSE IF( N2.EQ.0 ) THEN
  267. CALL CTRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  268. $ Q, LDQ, C, LDC )
  269. WORK( 1 ) = ONE
  270. RETURN
  271. END IF
  272. *
  273. * Compute the largest chunk size available from the workspace.
  274. *
  275. NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  276. *
  277. IF( LEFT ) THEN
  278. IF( NOTRAN ) THEN
  279. DO I = 1, N, NB
  280. LEN = MIN( NB, N-I+1 )
  281. LDWORK = M
  282. *
  283. * Multiply bottom part of C by Q12.
  284. *
  285. CALL CLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  286. $ LDWORK )
  287. CALL CTRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  288. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  289. $ LDWORK )
  290. *
  291. * Multiply top part of C by Q11.
  292. *
  293. CALL CGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  294. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  295. $ LDWORK )
  296. *
  297. * Multiply top part of C by Q21.
  298. *
  299. CALL CLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  300. $ WORK( N1+1 ), LDWORK )
  301. CALL CTRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  302. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  303. $ WORK( N1+1 ), LDWORK )
  304. *
  305. * Multiply bottom part of C by Q22.
  306. *
  307. CALL CGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  308. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  309. $ ONE, WORK( N1+1 ), LDWORK )
  310. *
  311. * Copy everything back.
  312. *
  313. CALL CLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  314. $ LDC )
  315. END DO
  316. ELSE
  317. DO I = 1, N, NB
  318. LEN = MIN( NB, N-I+1 )
  319. LDWORK = M
  320. *
  321. * Multiply bottom part of C by Q21**H.
  322. *
  323. CALL CLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  324. $ LDWORK )
  325. CALL CTRMM( 'Left', 'Upper', 'Conjugate', 'Non-Unit',
  326. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  327. $ LDWORK )
  328. *
  329. * Multiply top part of C by Q11**H.
  330. *
  331. CALL CGEMM( 'Conjugate', 'No Transpose', N2, LEN, N1,
  332. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  333. $ LDWORK )
  334. *
  335. * Multiply top part of C by Q12**H.
  336. *
  337. CALL CLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  338. $ WORK( N2+1 ), LDWORK )
  339. CALL CTRMM( 'Left', 'Lower', 'Conjugate', 'Non-Unit',
  340. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  341. $ WORK( N2+1 ), LDWORK )
  342. *
  343. * Multiply bottom part of C by Q22**H.
  344. *
  345. CALL CGEMM( 'Conjugate', 'No Transpose', N1, LEN, N2,
  346. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  347. $ ONE, WORK( N2+1 ), LDWORK )
  348. *
  349. * Copy everything back.
  350. *
  351. CALL CLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  352. $ LDC )
  353. END DO
  354. END IF
  355. ELSE
  356. IF( NOTRAN ) THEN
  357. DO I = 1, M, NB
  358. LEN = MIN( NB, M-I+1 )
  359. LDWORK = LEN
  360. *
  361. * Multiply right part of C by Q21.
  362. *
  363. CALL CLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  364. $ LDWORK )
  365. CALL CTRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  366. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  367. $ LDWORK )
  368. *
  369. * Multiply left part of C by Q11.
  370. *
  371. CALL CGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  372. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  373. $ LDWORK )
  374. *
  375. * Multiply left part of C by Q12.
  376. *
  377. CALL CLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  378. $ WORK( 1 + N2*LDWORK ), LDWORK )
  379. CALL CTRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  380. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  381. $ WORK( 1 + N2*LDWORK ), LDWORK )
  382. *
  383. * Multiply right part of C by Q22.
  384. *
  385. CALL CGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  386. $ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  387. $ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  388. *
  389. * Copy everything back.
  390. *
  391. CALL CLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  392. $ LDC )
  393. END DO
  394. ELSE
  395. DO I = 1, M, NB
  396. LEN = MIN( NB, M-I+1 )
  397. LDWORK = LEN
  398. *
  399. * Multiply right part of C by Q12**H.
  400. *
  401. CALL CLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  402. $ LDWORK )
  403. CALL CTRMM( 'Right', 'Lower', 'Conjugate', 'Non-Unit',
  404. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  405. $ LDWORK )
  406. *
  407. * Multiply left part of C by Q11**H.
  408. *
  409. CALL CGEMM( 'No Transpose', 'Conjugate', LEN, N1, N2,
  410. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  411. $ LDWORK )
  412. *
  413. * Multiply left part of C by Q21**H.
  414. *
  415. CALL CLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  416. $ WORK( 1 + N1*LDWORK ), LDWORK )
  417. CALL CTRMM( 'Right', 'Upper', 'Conjugate', 'Non-Unit',
  418. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  419. $ WORK( 1 + N1*LDWORK ), LDWORK )
  420. *
  421. * Multiply right part of C by Q22**H.
  422. *
  423. CALL CGEMM( 'No Transpose', 'Conjugate', LEN, N2, N1,
  424. $ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  425. $ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  426. *
  427. * Copy everything back.
  428. *
  429. CALL CLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  430. $ LDC )
  431. END DO
  432. END IF
  433. END IF
  434. *
  435. WORK( 1 ) = CMPLX( LWKOPT )
  436. RETURN
  437. *
  438. * End of CUNM22
  439. *
  440. END