You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytrs_3.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. *> \brief \b CSYTRS_3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYTRS_3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrs_3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrs_3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrs_3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDA, LDB, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX A( LDA, * ), B( LDB, * ), E( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *> CSYTRS_3 solves a system of linear equations A * X = B with a complex
  39. *> symmetric matrix A using the factorization computed
  40. *> by CSYTRF_RK or CSYTRF_BK:
  41. *>
  42. *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
  43. *>
  44. *> where U (or L) is unit upper (or lower) triangular matrix,
  45. *> U**T (or L**T) is the transpose of U (or L), P is a permutation
  46. *> matrix, P**T is the transpose of P, and D is symmetric and block
  47. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  48. *>
  49. *> This algorithm is using Level 3 BLAS.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> Specifies whether the details of the factorization are
  59. *> stored as an upper or lower triangular matrix:
  60. *> = 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
  61. *> = 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
  62. *> \endverbatim
  63. *>
  64. *> \param[in] N
  65. *> \verbatim
  66. *> N is INTEGER
  67. *> The order of the matrix A. N >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] NRHS
  71. *> \verbatim
  72. *> NRHS is INTEGER
  73. *> The number of right hand sides, i.e., the number of columns
  74. *> of the matrix B. NRHS >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] A
  78. *> \verbatim
  79. *> A is COMPLEX array, dimension (LDA,N)
  80. *> Diagonal of the block diagonal matrix D and factors U or L
  81. *> as computed by CSYTRF_RK and CSYTRF_BK:
  82. *> a) ONLY diagonal elements of the symmetric block diagonal
  83. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  84. *> (superdiagonal (or subdiagonal) elements of D
  85. *> should be provided on entry in array E), and
  86. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  87. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is COMPLEX array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the symmetric block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by CSYTRF_RK or CSYTRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] B
  118. *> \verbatim
  119. *> B is COMPLEX array, dimension (LDB,NRHS)
  120. *> On entry, the right hand side matrix B.
  121. *> On exit, the solution matrix X.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDB
  125. *> \verbatim
  126. *> LDB is INTEGER
  127. *> The leading dimension of the array B. LDB >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] INFO
  131. *> \verbatim
  132. *> INFO is INTEGER
  133. *> = 0: successful exit
  134. *> < 0: if INFO = -i, the i-th argument had an illegal value
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date June 2017
  146. *
  147. *> \ingroup complexSYcomputational
  148. *
  149. *> \par Contributors:
  150. * ==================
  151. *>
  152. *> \verbatim
  153. *>
  154. *> June 2017, Igor Kozachenko,
  155. *> Computer Science Division,
  156. *> University of California, Berkeley
  157. *>
  158. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  159. *> School of Mathematics,
  160. *> University of Manchester
  161. *>
  162. *> \endverbatim
  163. *
  164. * =====================================================================
  165. SUBROUTINE CSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
  166. $ INFO )
  167. *
  168. * -- LAPACK computational routine (version 3.7.1) --
  169. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  170. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171. * June 2017
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER UPLO
  175. INTEGER INFO, LDA, LDB, N, NRHS
  176. * ..
  177. * .. Array Arguments ..
  178. INTEGER IPIV( * )
  179. COMPLEX A( LDA, * ), B( LDB, * ), E( * )
  180. * ..
  181. *
  182. * =====================================================================
  183. *
  184. * .. Parameters ..
  185. COMPLEX ONE
  186. PARAMETER ( ONE = ( 1.0E+0,0.0E+0 ) )
  187. * ..
  188. * .. Local Scalars ..
  189. LOGICAL UPPER
  190. INTEGER I, J, K, KP
  191. COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
  192. * ..
  193. * .. External Functions ..
  194. LOGICAL LSAME
  195. EXTERNAL LSAME
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL CSCAL, CSWAP, CTRSM, XERBLA
  199. * ..
  200. * .. Intrinsic Functions ..
  201. INTRINSIC ABS, MAX
  202. * ..
  203. * .. Executable Statements ..
  204. *
  205. INFO = 0
  206. UPPER = LSAME( UPLO, 'U' )
  207. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  208. INFO = -1
  209. ELSE IF( N.LT.0 ) THEN
  210. INFO = -2
  211. ELSE IF( NRHS.LT.0 ) THEN
  212. INFO = -3
  213. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  214. INFO = -5
  215. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  216. INFO = -9
  217. END IF
  218. IF( INFO.NE.0 ) THEN
  219. CALL XERBLA( 'CSYTRS_3', -INFO )
  220. RETURN
  221. END IF
  222. *
  223. * Quick return if possible
  224. *
  225. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  226. $ RETURN
  227. *
  228. IF( UPPER ) THEN
  229. *
  230. * Begin Upper
  231. *
  232. * Solve A*X = B, where A = U*D*U**T.
  233. *
  234. * P**T * B
  235. *
  236. * Interchange rows K and IPIV(K) of matrix B in the same order
  237. * that the formation order of IPIV(I) vector for Upper case.
  238. *
  239. * (We can do the simple loop over IPIV with decrement -1,
  240. * since the ABS value of IPIV(I) represents the row index
  241. * of the interchange with row i in both 1x1 and 2x2 pivot cases)
  242. *
  243. DO K = N, 1, -1
  244. KP = ABS( IPIV( K ) )
  245. IF( KP.NE.K ) THEN
  246. CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  247. END IF
  248. END DO
  249. *
  250. * Compute (U \P**T * B) -> B [ (U \P**T * B) ]
  251. *
  252. CALL CTRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  253. *
  254. * Compute D \ B -> B [ D \ (U \P**T * B) ]
  255. *
  256. I = N
  257. DO WHILE ( I.GE.1 )
  258. IF( IPIV( I ).GT.0 ) THEN
  259. CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  260. ELSE IF ( I.GT.1 ) THEN
  261. AKM1K = E( I )
  262. AKM1 = A( I-1, I-1 ) / AKM1K
  263. AK = A( I, I ) / AKM1K
  264. DENOM = AKM1*AK - ONE
  265. DO J = 1, NRHS
  266. BKM1 = B( I-1, J ) / AKM1K
  267. BK = B( I, J ) / AKM1K
  268. B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
  269. B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
  270. END DO
  271. I = I - 1
  272. END IF
  273. I = I - 1
  274. END DO
  275. *
  276. * Compute (U**T \ B) -> B [ U**T \ (D \ (U \P**T * B) ) ]
  277. *
  278. CALL CTRSM( 'L', 'U', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  279. *
  280. * P * B [ P * (U**T \ (D \ (U \P**T * B) )) ]
  281. *
  282. * Interchange rows K and IPIV(K) of matrix B in reverse order
  283. * from the formation order of IPIV(I) vector for Upper case.
  284. *
  285. * (We can do the simple loop over IPIV with increment 1,
  286. * since the ABS value of IPIV( I ) represents the row index
  287. * of the interchange with row i in both 1x1 and 2x2 pivot cases)
  288. *
  289. DO K = 1, N, 1
  290. KP = ABS( IPIV( K ) )
  291. IF( KP.NE.K ) THEN
  292. CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  293. END IF
  294. END DO
  295. *
  296. ELSE
  297. *
  298. * Begin Lower
  299. *
  300. * Solve A*X = B, where A = L*D*L**T.
  301. *
  302. * P**T * B
  303. * Interchange rows K and IPIV(K) of matrix B in the same order
  304. * that the formation order of IPIV(I) vector for Lower case.
  305. *
  306. * (We can do the simple loop over IPIV with increment 1,
  307. * since the ABS value of IPIV(I) represents the row index
  308. * of the interchange with row i in both 1x1 and 2x2 pivot cases)
  309. *
  310. DO K = 1, N, 1
  311. KP = ABS( IPIV( K ) )
  312. IF( KP.NE.K ) THEN
  313. CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  314. END IF
  315. END DO
  316. *
  317. * Compute (L \P**T * B) -> B [ (L \P**T * B) ]
  318. *
  319. CALL CTRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  320. *
  321. * Compute D \ B -> B [ D \ (L \P**T * B) ]
  322. *
  323. I = 1
  324. DO WHILE ( I.LE.N )
  325. IF( IPIV( I ).GT.0 ) THEN
  326. CALL CSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
  327. ELSE IF( I.LT.N ) THEN
  328. AKM1K = E( I )
  329. AKM1 = A( I, I ) / AKM1K
  330. AK = A( I+1, I+1 ) / AKM1K
  331. DENOM = AKM1*AK - ONE
  332. DO J = 1, NRHS
  333. BKM1 = B( I, J ) / AKM1K
  334. BK = B( I+1, J ) / AKM1K
  335. B( I, J ) = ( AK*BKM1-BK ) / DENOM
  336. B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  337. END DO
  338. I = I + 1
  339. END IF
  340. I = I + 1
  341. END DO
  342. *
  343. * Compute (L**T \ B) -> B [ L**T \ (D \ (L \P**T * B) ) ]
  344. *
  345. CALL CTRSM('L', 'L', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
  346. *
  347. * P * B [ P * (L**T \ (D \ (L \P**T * B) )) ]
  348. *
  349. * Interchange rows K and IPIV(K) of matrix B in reverse order
  350. * from the formation order of IPIV(I) vector for Lower case.
  351. *
  352. * (We can do the simple loop over IPIV with decrement -1,
  353. * since the ABS value of IPIV(I) represents the row index
  354. * of the interchange with row i in both 1x1 and 2x2 pivot cases)
  355. *
  356. DO K = N, 1, -1
  357. KP = ABS( IPIV( K ) )
  358. IF( KP.NE.K ) THEN
  359. CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  360. END IF
  361. END DO
  362. *
  363. * END Lower
  364. *
  365. END IF
  366. *
  367. RETURN
  368. *
  369. * End of CSYTRS_3
  370. *
  371. END