You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytrf_aa.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. *> \brief \b CSYTRF_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYTRF_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytrf_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytrf_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytrf_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER N, LDA, LWORK, INFO
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CSYTRF_AA computes the factorization of a complex symmetric matrix A
  38. *> using the Aasen's algorithm. The form of the factorization is
  39. *>
  40. *> A = U*T*U**T or A = L*T*L**T
  41. *>
  42. *> where U (or L) is a product of permutation and unit upper (lower)
  43. *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
  44. *>
  45. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is REAL array, dimension (LDA,N)
  67. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  68. *> N-by-N upper triangular part of A contains the upper
  69. *> triangular part of the matrix A, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of A contains the lower
  72. *> triangular part of the matrix A, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *>
  75. *> On exit, the tridiagonal matrix is stored in the diagonals
  76. *> and the subdiagonals of A just below (or above) the diagonals,
  77. *> and L is stored below (or above) the subdiaonals, when UPLO
  78. *> is 'L' (or 'U').
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> On exit, it contains the details of the interchanges, i.e.,
  91. *> the row and column k of A were interchanged with the
  92. *> row and column IPIV(k).
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is REAL array, dimension (MAX(1,LWORK))
  98. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LWORK
  102. *> \verbatim
  103. *> LWORK is INTEGER
  104. *> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
  105. *> LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106. *>
  107. *> If LWORK = -1, then a workspace query is assumed; the routine
  108. *> only calculates the optimal size of the WORK array, returns
  109. *> this value as the first entry of the WORK array, and no error
  110. *> message related to LWORK is issued by XERBLA.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] INFO
  114. *> \verbatim
  115. *> INFO is INTEGER
  116. *> = 0: successful exit
  117. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \date November 2017
  129. *
  130. *> \ingroup complexSYcomputational
  131. *
  132. * =====================================================================
  133. SUBROUTINE CSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  134. *
  135. * -- LAPACK computational routine (version 3.8.0) --
  136. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  137. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138. * November 2017
  139. *
  140. IMPLICIT NONE
  141. *
  142. * .. Scalar Arguments ..
  143. CHARACTER UPLO
  144. INTEGER N, LDA, LWORK, INFO
  145. * ..
  146. * .. Array Arguments ..
  147. INTEGER IPIV( * )
  148. COMPLEX A( LDA, * ), WORK( * )
  149. * ..
  150. *
  151. * =====================================================================
  152. * .. Parameters ..
  153. COMPLEX ZERO, ONE
  154. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  155. *
  156. * .. Local Scalars ..
  157. LOGICAL LQUERY, UPPER
  158. INTEGER J, LWKOPT
  159. INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  160. COMPLEX ALPHA
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. INTEGER ILAENV
  165. EXTERNAL LSAME, ILAENV
  166. * ..
  167. * .. External Subroutines ..
  168. EXTERNAL CLASYF_AA, CGEMM, CGEMV, CSCAL, CSWAP, CCOPY,
  169. $ XERBLA
  170. * ..
  171. * .. Intrinsic Functions ..
  172. INTRINSIC MAX
  173. * ..
  174. * .. Executable Statements ..
  175. *
  176. * Determine the block size
  177. *
  178. NB = ILAENV( 1, 'CSYTRF_AA', UPLO, N, -1, -1, -1 )
  179. *
  180. * Test the input parameters.
  181. *
  182. INFO = 0
  183. UPPER = LSAME( UPLO, 'U' )
  184. LQUERY = ( LWORK.EQ.-1 )
  185. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  186. INFO = -1
  187. ELSE IF( N.LT.0 ) THEN
  188. INFO = -2
  189. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  190. INFO = -4
  191. ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  192. INFO = -7
  193. END IF
  194. *
  195. IF( INFO.EQ.0 ) THEN
  196. LWKOPT = (NB+1)*N
  197. WORK( 1 ) = LWKOPT
  198. END IF
  199. *
  200. IF( INFO.NE.0 ) THEN
  201. CALL XERBLA( 'CSYTRF_AA', -INFO )
  202. RETURN
  203. ELSE IF( LQUERY ) THEN
  204. RETURN
  205. END IF
  206. *
  207. * Quick return
  208. *
  209. IF ( N.EQ.0 ) THEN
  210. RETURN
  211. ENDIF
  212. IPIV( 1 ) = 1
  213. IF ( N.EQ.1 ) THEN
  214. RETURN
  215. END IF
  216. *
  217. * Adjust block size based on the workspace size
  218. *
  219. IF( LWORK.LT.((1+NB)*N) ) THEN
  220. NB = ( LWORK-N ) / N
  221. END IF
  222. *
  223. IF( UPPER ) THEN
  224. *
  225. * .....................................................
  226. * Factorize A as L*D*L**T using the upper triangle of A
  227. * .....................................................
  228. *
  229. * Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  230. *
  231. CALL CCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  232. *
  233. * J is the main loop index, increasing from 1 to N in steps of
  234. * JB, where JB is the number of columns factorized by CLASYF;
  235. * JB is either NB, or N-J+1 for the last block
  236. *
  237. J = 0
  238. 10 CONTINUE
  239. IF( J.GE.N )
  240. $ GO TO 20
  241. *
  242. * each step of the main loop
  243. * J is the last column of the previous panel
  244. * J1 is the first column of the current panel
  245. * K1 identifies if the previous column of the panel has been
  246. * explicitly stored, e.g., K1=1 for the first panel, and
  247. * K1=0 for the rest
  248. *
  249. J1 = J + 1
  250. JB = MIN( N-J1+1, NB )
  251. K1 = MAX(1, J)-J
  252. *
  253. * Panel factorization
  254. *
  255. CALL CLASYF_AA( UPLO, 2-K1, N-J, JB,
  256. $ A( MAX(1, J), J+1 ), LDA,
  257. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  258. *
  259. * Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  260. *
  261. DO J2 = J+2, MIN(N, J+JB+1)
  262. IPIV( J2 ) = IPIV( J2 ) + J
  263. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  264. CALL CSWAP( J1-K1-2, A( 1, J2 ), 1,
  265. $ A( 1, IPIV(J2) ), 1 )
  266. END IF
  267. END DO
  268. J = J + JB
  269. *
  270. * Trailing submatrix update, where
  271. * the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  272. * WORK stores the current block of the auxiriarly matrix H
  273. *
  274. IF( J.LT.N ) THEN
  275. *
  276. * If first panel and JB=1 (NB=1), then nothing to do
  277. *
  278. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  279. *
  280. * Merge rank-1 update with BLAS-3 update
  281. *
  282. ALPHA = A( J, J+1 )
  283. A( J, J+1 ) = ONE
  284. CALL CCOPY( N-J, A( J-1, J+1 ), LDA,
  285. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  286. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  287. *
  288. * K1 identifies if the previous column of the panel has been
  289. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  290. * while K1=0 and K2=1 for the rest
  291. *
  292. IF( J1.GT.1 ) THEN
  293. *
  294. * Not first panel
  295. *
  296. K2 = 1
  297. ELSE
  298. *
  299. * First panel
  300. *
  301. K2 = 0
  302. *
  303. * First update skips the first column
  304. *
  305. JB = JB - 1
  306. END IF
  307. *
  308. DO J2 = J+1, N, NB
  309. NJ = MIN( NB, N-J2+1 )
  310. *
  311. * Update (J2, J2) diagonal block with CGEMV
  312. *
  313. J3 = J2
  314. DO MJ = NJ-1, 1, -1
  315. CALL CGEMV( 'No transpose', MJ, JB+1,
  316. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  317. $ A( J1-K2, J3 ), 1,
  318. $ ONE, A( J3, J3 ), LDA )
  319. J3 = J3 + 1
  320. END DO
  321. *
  322. * Update off-diagonal block of J2-th block row with CGEMM
  323. *
  324. CALL CGEMM( 'Transpose', 'Transpose',
  325. $ NJ, N-J3+1, JB+1,
  326. $ -ONE, A( J1-K2, J2 ), LDA,
  327. $ WORK( J3-J1+1+K1*N ), N,
  328. $ ONE, A( J2, J3 ), LDA )
  329. END DO
  330. *
  331. * Recover T( J, J+1 )
  332. *
  333. A( J, J+1 ) = ALPHA
  334. END IF
  335. *
  336. * WORK(J+1, 1) stores H(J+1, 1)
  337. *
  338. CALL CCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  339. END IF
  340. GO TO 10
  341. ELSE
  342. *
  343. * .....................................................
  344. * Factorize A as L*D*L**T using the lower triangle of A
  345. * .....................................................
  346. *
  347. * copy first column A(1:N, 1) into H(1:N, 1)
  348. * (stored in WORK(1:N))
  349. *
  350. CALL CCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  351. *
  352. * J is the main loop index, increasing from 1 to N in steps of
  353. * JB, where JB is the number of columns factorized by CLASYF;
  354. * JB is either NB, or N-J+1 for the last block
  355. *
  356. J = 0
  357. 11 CONTINUE
  358. IF( J.GE.N )
  359. $ GO TO 20
  360. *
  361. * each step of the main loop
  362. * J is the last column of the previous panel
  363. * J1 is the first column of the current panel
  364. * K1 identifies if the previous column of the panel has been
  365. * explicitly stored, e.g., K1=1 for the first panel, and
  366. * K1=0 for the rest
  367. *
  368. J1 = J+1
  369. JB = MIN( N-J1+1, NB )
  370. K1 = MAX(1, J)-J
  371. *
  372. * Panel factorization
  373. *
  374. CALL CLASYF_AA( UPLO, 2-K1, N-J, JB,
  375. $ A( J+1, MAX(1, J) ), LDA,
  376. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  377. *
  378. * Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  379. *
  380. DO J2 = J+2, MIN(N, J+JB+1)
  381. IPIV( J2 ) = IPIV( J2 ) + J
  382. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  383. CALL CSWAP( J1-K1-2, A( J2, 1 ), LDA,
  384. $ A( IPIV(J2), 1 ), LDA )
  385. END IF
  386. END DO
  387. J = J + JB
  388. *
  389. * Trailing submatrix update, where
  390. * A(J2+1, J1-1) stores L(J2+1, J1) and
  391. * WORK(J2+1, 1) stores H(J2+1, 1)
  392. *
  393. IF( J.LT.N ) THEN
  394. *
  395. * if first panel and JB=1 (NB=1), then nothing to do
  396. *
  397. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  398. *
  399. * Merge rank-1 update with BLAS-3 update
  400. *
  401. ALPHA = A( J+1, J )
  402. A( J+1, J ) = ONE
  403. CALL CCOPY( N-J, A( J+1, J-1 ), 1,
  404. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  405. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  406. *
  407. * K1 identifies if the previous column of the panel has been
  408. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  409. * while K1=0 and K2=1 for the rest
  410. *
  411. IF( J1.GT.1 ) THEN
  412. *
  413. * Not first panel
  414. *
  415. K2 = 1
  416. ELSE
  417. *
  418. * First panel
  419. *
  420. K2 = 0
  421. *
  422. * First update skips the first column
  423. *
  424. JB = JB - 1
  425. END IF
  426. *
  427. DO J2 = J+1, N, NB
  428. NJ = MIN( NB, N-J2+1 )
  429. *
  430. * Update (J2, J2) diagonal block with CGEMV
  431. *
  432. J3 = J2
  433. DO MJ = NJ-1, 1, -1
  434. CALL CGEMV( 'No transpose', MJ, JB+1,
  435. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  436. $ A( J3, J1-K2 ), LDA,
  437. $ ONE, A( J3, J3 ), 1 )
  438. J3 = J3 + 1
  439. END DO
  440. *
  441. * Update off-diagonal block in J2-th block column with CGEMM
  442. *
  443. CALL CGEMM( 'No transpose', 'Transpose',
  444. $ N-J3+1, NJ, JB+1,
  445. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  446. $ A( J2, J1-K2 ), LDA,
  447. $ ONE, A( J3, J2 ), LDA )
  448. END DO
  449. *
  450. * Recover T( J+1, J )
  451. *
  452. A( J+1, J ) = ALPHA
  453. END IF
  454. *
  455. * WORK(J+1, 1) stores H(J+1, 1)
  456. *
  457. CALL CCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  458. END IF
  459. GO TO 11
  460. END IF
  461. *
  462. 20 CONTINUE
  463. RETURN
  464. *
  465. * End of CSYTRF_AA
  466. *
  467. END