You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clamswlq.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. *
  2. * Definition:
  3. * ===========
  4. *
  5. * SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  6. * $ LDT, C, LDC, WORK, LWORK, INFO )
  7. *
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER SIDE, TRANS
  11. * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ),
  15. * $ T( LDT, * )
  16. *> \par Purpose:
  17. * =============
  18. *>
  19. *> \verbatim
  20. *>
  21. *> CLAMQRTS overwrites the general real M-by-N matrix C with
  22. *>
  23. *>
  24. *> SIDE = 'L' SIDE = 'R'
  25. *> TRANS = 'N': Q * C C * Q
  26. *> TRANS = 'T': Q**H * C C * Q**H
  27. *> where Q is a real orthogonal matrix defined as the product of blocked
  28. *> elementary reflectors computed by short wide LQ
  29. *> factorization (CLASWLQ)
  30. *> \endverbatim
  31. *
  32. * Arguments:
  33. * ==========
  34. *
  35. *> \param[in] SIDE
  36. *> \verbatim
  37. *> SIDE is CHARACTER*1
  38. *> = 'L': apply Q or Q**H from the Left;
  39. *> = 'R': apply Q or Q**H from the Right.
  40. *> \endverbatim
  41. *>
  42. *> \param[in] TRANS
  43. *> \verbatim
  44. *> TRANS is CHARACTER*1
  45. *> = 'N': No transpose, apply Q;
  46. *> = 'C': Transpose, apply Q**H.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] M
  50. *> \verbatim
  51. *> M is INTEGER
  52. *> The number of rows of the matrix C. M >=0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of columns of the matrix C. N >= M.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] K
  62. *> \verbatim
  63. *> K is INTEGER
  64. *> The number of elementary reflectors whose product defines
  65. *> the matrix Q.
  66. *> M >= K >= 0;
  67. *>
  68. *> \endverbatim
  69. *> \param[in] MB
  70. *> \verbatim
  71. *> MB is INTEGER
  72. *> The row block size to be used in the blocked QR.
  73. *> M >= MB >= 1
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NB
  77. *> \verbatim
  78. *> NB is INTEGER
  79. *> The column block size to be used in the blocked QR.
  80. *> NB > M.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] NB
  84. *> \verbatim
  85. *> NB is INTEGER
  86. *> The block size to be used in the blocked QR.
  87. *> MB > M.
  88. *>
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is COMPLEX array, dimension
  94. *> (LDA,M) if SIDE = 'L',
  95. *> (LDA,N) if SIDE = 'R'
  96. *> The i-th row must contain the vector which defines the blocked
  97. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  98. *> CLASWLQ in the first k rows of its array argument A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> The leading dimension of the array A.
  105. *> If SIDE = 'L', LDA >= max(1,M);
  106. *> if SIDE = 'R', LDA >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[in] T
  110. *> \verbatim
  111. *> T is COMPLEX array, dimension
  112. *> ( M * Number of blocks(CEIL(N-K/NB-K)),
  113. *> The blocked upper triangular block reflectors stored in compact form
  114. *> as a sequence of upper triangular blocks. See below
  115. *> for further details.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDT
  119. *> \verbatim
  120. *> LDT is INTEGER
  121. *> The leading dimension of the array T. LDT >= MB.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] C
  125. *> \verbatim
  126. *> C is COMPLEX array, dimension (LDC,N)
  127. *> On entry, the M-by-N matrix C.
  128. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDC
  132. *> \verbatim
  133. *> LDC is INTEGER
  134. *> The leading dimension of the array C. LDC >= max(1,M).
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK.
  146. *> If SIDE = 'L', LWORK >= max(1,NB) * MB;
  147. *> if SIDE = 'R', LWORK >= max(1,M) * MB.
  148. *> If LWORK = -1, then a workspace query is assumed; the routine
  149. *> only calculates the optimal size of the WORK array, returns
  150. *> this value as the first entry of the WORK array, and no error
  151. *> message related to LWORK is issued by XERBLA.
  152. *> \endverbatim
  153. *>
  154. *> \param[out] INFO
  155. *> \verbatim
  156. *> INFO is INTEGER
  157. *> = 0: successful exit
  158. *> < 0: if INFO = -i, the i-th argument had an illegal value
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \par Further Details:
  170. * =====================
  171. *>
  172. *> \verbatim
  173. *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
  174. *> representing Q as a product of other orthogonal matrices
  175. *> Q = Q(1) * Q(2) * . . . * Q(k)
  176. *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
  177. *> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
  178. *> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
  179. *> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
  180. *> . . .
  181. *>
  182. *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
  183. *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  184. *> block reflectors, stored in array T(1:LDT,1:N).
  185. *> For more information see Further Details in GELQT.
  186. *>
  187. *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
  188. *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
  189. *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
  190. *> The last Q(k) may use fewer rows.
  191. *> For more information see Further Details in TPQRT.
  192. *>
  193. *> For more details of the overall algorithm, see the description of
  194. *> Sequential TSQR in Section 2.2 of [1].
  195. *>
  196. *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  197. *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  198. *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  199. *> \endverbatim
  200. *>
  201. * =====================================================================
  202. SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  203. $ LDT, C, LDC, WORK, LWORK, INFO )
  204. *
  205. * -- LAPACK computational routine (version 3.7.1) --
  206. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  207. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208. * June 2017
  209. *
  210. * .. Scalar Arguments ..
  211. CHARACTER SIDE, TRANS
  212. INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  213. * ..
  214. * .. Array Arguments ..
  215. COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ),
  216. $ T( LDT, * )
  217. * ..
  218. *
  219. * =====================================================================
  220. *
  221. * ..
  222. * .. Local Scalars ..
  223. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  224. INTEGER I, II, KK, LW, CTR
  225. * ..
  226. * .. External Functions ..
  227. LOGICAL LSAME
  228. EXTERNAL LSAME
  229. * .. External Subroutines ..
  230. EXTERNAL CTPMLQT, CGEMLQT, XERBLA
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Test the input arguments
  235. *
  236. LQUERY = LWORK.LT.0
  237. NOTRAN = LSAME( TRANS, 'N' )
  238. TRAN = LSAME( TRANS, 'C' )
  239. LEFT = LSAME( SIDE, 'L' )
  240. RIGHT = LSAME( SIDE, 'R' )
  241. IF (LEFT) THEN
  242. LW = N * MB
  243. ELSE
  244. LW = M * MB
  245. END IF
  246. *
  247. INFO = 0
  248. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  249. INFO = -1
  250. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  251. INFO = -2
  252. ELSE IF( M.LT.0 ) THEN
  253. INFO = -3
  254. ELSE IF( N.LT.0 ) THEN
  255. INFO = -4
  256. ELSE IF( K.LT.0 ) THEN
  257. INFO = -5
  258. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  259. INFO = -9
  260. ELSE IF( LDT.LT.MAX( 1, MB) ) THEN
  261. INFO = -11
  262. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  263. INFO = -13
  264. ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  265. INFO = -15
  266. END IF
  267. *
  268. IF( INFO.NE.0 ) THEN
  269. CALL XERBLA( 'CLAMSWLQ', -INFO )
  270. WORK(1) = LW
  271. RETURN
  272. ELSE IF (LQUERY) THEN
  273. WORK(1) = LW
  274. RETURN
  275. END IF
  276. *
  277. * Quick return if possible
  278. *
  279. IF( MIN(M,N,K).EQ.0 ) THEN
  280. RETURN
  281. END IF
  282. *
  283. IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN
  284. CALL CGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  285. $ T, LDT, C, LDC, WORK, INFO)
  286. RETURN
  287. END IF
  288. *
  289. IF(LEFT.AND.TRAN) THEN
  290. *
  291. * Multiply Q to the last block of C
  292. *
  293. KK = MOD((M-K),(NB-K))
  294. CTR = (M-K)/(NB-K)
  295. IF (KK.GT.0) THEN
  296. II=M-KK+1
  297. CALL CTPMLQT('L','C',KK , N, K, 0, MB, A(1,II), LDA,
  298. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  299. $ C(II,1), LDC, WORK, INFO )
  300. ELSE
  301. II=M+1
  302. END IF
  303. *
  304. DO I=II-(NB-K),NB+1,-(NB-K)
  305. *
  306. * Multiply Q to the current block of C (1:M,I:I+NB)
  307. *
  308. CTR = CTR - 1
  309. CALL CTPMLQT('L','C',NB-K , N, K, 0,MB, A(1,I), LDA,
  310. $ T(1,CTR*K+1),LDT, C(1,1), LDC,
  311. $ C(I,1), LDC, WORK, INFO )
  312. END DO
  313. *
  314. * Multiply Q to the first block of C (1:M,1:NB)
  315. *
  316. CALL CGEMLQT('L','C',NB , N, K, MB, A(1,1), LDA, T
  317. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  318. *
  319. ELSE IF (LEFT.AND.NOTRAN) THEN
  320. *
  321. * Multiply Q to the first block of C
  322. *
  323. KK = MOD((M-K),(NB-K))
  324. II = M-KK+1
  325. CTR = 1
  326. CALL CGEMLQT('L','N',NB , N, K, MB, A(1,1), LDA, T
  327. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  328. *
  329. DO I=NB+1,II-NB+K,(NB-K)
  330. *
  331. * Multiply Q to the current block of C (I:I+NB,1:N)
  332. *
  333. CALL CTPMLQT('L','N',NB-K , N, K, 0,MB, A(1,I), LDA,
  334. $ T(1, CTR *K+1), LDT, C(1,1), LDC,
  335. $ C(I,1), LDC, WORK, INFO )
  336. CTR = CTR + 1
  337. *
  338. END DO
  339. IF(II.LE.M) THEN
  340. *
  341. * Multiply Q to the last block of C
  342. *
  343. CALL CTPMLQT('L','N',KK , N, K, 0, MB, A(1,II), LDA,
  344. $ T(1, CTR*K+1), LDT, C(1,1), LDC,
  345. $ C(II,1), LDC, WORK, INFO )
  346. *
  347. END IF
  348. *
  349. ELSE IF(RIGHT.AND.NOTRAN) THEN
  350. *
  351. * Multiply Q to the last block of C
  352. *
  353. KK = MOD((N-K),(NB-K))
  354. CTR = (N-K)/(NB-K)
  355. IF (KK.GT.0) THEN
  356. II=N-KK+1
  357. CALL CTPMLQT('R','N',M , KK, K, 0, MB, A(1, II), LDA,
  358. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  359. $ C(1,II), LDC, WORK, INFO )
  360. ELSE
  361. II=N+1
  362. END IF
  363. *
  364. DO I=II-(NB-K),NB+1,-(NB-K)
  365. *
  366. * Multiply Q to the current block of C (1:M,I:I+MB)
  367. *
  368. CTR = CTR - 1
  369. CALL CTPMLQT('R','N', M, NB-K, K, 0, MB, A(1, I), LDA,
  370. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  371. $ C(1,I), LDC, WORK, INFO )
  372. END DO
  373. *
  374. * Multiply Q to the first block of C (1:M,1:MB)
  375. *
  376. CALL CGEMLQT('R','N',M , NB, K, MB, A(1,1), LDA, T
  377. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  378. *
  379. ELSE IF (RIGHT.AND.TRAN) THEN
  380. *
  381. * Multiply Q to the first block of C
  382. *
  383. KK = MOD((N-K),(NB-K))
  384. II=N-KK+1
  385. CTR = 1
  386. CALL CGEMLQT('R','C',M , NB, K, MB, A(1,1), LDA, T
  387. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  388. *
  389. DO I=NB+1,II-NB+K,(NB-K)
  390. *
  391. * Multiply Q to the current block of C (1:M,I:I+MB)
  392. *
  393. CALL CTPMLQT('R','C',M , NB-K, K, 0,MB, A(1,I), LDA,
  394. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  395. $ C(1,I), LDC, WORK, INFO )
  396. CTR = CTR + 1
  397. *
  398. END DO
  399. IF(II.LE.N) THEN
  400. *
  401. * Multiply Q to the last block of C
  402. *
  403. CALL CTPMLQT('R','C',M , KK, K, 0,MB, A(1,II), LDA,
  404. $ T(1,CTR*K+1),LDT, C(1,1), LDC,
  405. $ C(1,II), LDC, WORK, INFO )
  406. *
  407. END IF
  408. *
  409. END IF
  410. *
  411. WORK(1) = LW
  412. RETURN
  413. *
  414. * End of CLAMSWLQ
  415. *
  416. END