You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claed8.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. *> \brief \b CLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAED8 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
  22. * Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
  23. * GIVCOL, GIVNUM, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
  27. * REAL RHO
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  31. * $ INDXQ( * ), PERM( * )
  32. * REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
  33. * $ Z( * )
  34. * COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CLAED8 merges the two sets of eigenvalues together into a single
  44. *> sorted set. Then it tries to deflate the size of the problem.
  45. *> There are two ways in which deflation can occur: when two or more
  46. *> eigenvalues are close together or if there is a tiny element in the
  47. *> Z vector. For each such occurrence the order of the related secular
  48. *> equation problem is reduced by one.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[out] K
  55. *> \verbatim
  56. *> K is INTEGER
  57. *> Contains the number of non-deflated eigenvalues.
  58. *> This is the order of the related secular equation.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] QSIZ
  68. *> \verbatim
  69. *> QSIZ is INTEGER
  70. *> The dimension of the unitary matrix used to reduce
  71. *> the dense or band matrix to tridiagonal form.
  72. *> QSIZ >= N if ICOMPQ = 1.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] Q
  76. *> \verbatim
  77. *> Q is COMPLEX array, dimension (LDQ,N)
  78. *> On entry, Q contains the eigenvectors of the partially solved
  79. *> system which has been previously updated in matrix
  80. *> multiplies with other partially solved eigensystems.
  81. *> On exit, Q contains the trailing (N-K) updated eigenvectors
  82. *> (those which were deflated) in its last N-K columns.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDQ
  86. *> \verbatim
  87. *> LDQ is INTEGER
  88. *> The leading dimension of the array Q. LDQ >= max( 1, N ).
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] D
  92. *> \verbatim
  93. *> D is REAL array, dimension (N)
  94. *> On entry, D contains the eigenvalues of the two submatrices to
  95. *> be combined. On exit, D contains the trailing (N-K) updated
  96. *> eigenvalues (those which were deflated) sorted into increasing
  97. *> order.
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] RHO
  101. *> \verbatim
  102. *> RHO is REAL
  103. *> Contains the off diagonal element associated with the rank-1
  104. *> cut which originally split the two submatrices which are now
  105. *> being recombined. RHO is modified during the computation to
  106. *> the value required by SLAED3.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] CUTPNT
  110. *> \verbatim
  111. *> CUTPNT is INTEGER
  112. *> Contains the location of the last eigenvalue in the leading
  113. *> sub-matrix. MIN(1,N) <= CUTPNT <= N.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] Z
  117. *> \verbatim
  118. *> Z is REAL array, dimension (N)
  119. *> On input this vector contains the updating vector (the last
  120. *> row of the first sub-eigenvector matrix and the first row of
  121. *> the second sub-eigenvector matrix). The contents of Z are
  122. *> destroyed during the updating process.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] DLAMDA
  126. *> \verbatim
  127. *> DLAMDA is REAL array, dimension (N)
  128. *> Contains a copy of the first K eigenvalues which will be used
  129. *> by SLAED3 to form the secular equation.
  130. *> \endverbatim
  131. *>
  132. *> \param[out] Q2
  133. *> \verbatim
  134. *> Q2 is COMPLEX array, dimension (LDQ2,N)
  135. *> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
  136. *> Contains a copy of the first K eigenvectors which will be used
  137. *> by SLAED7 in a matrix multiply (SGEMM) to update the new
  138. *> eigenvectors.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDQ2
  142. *> \verbatim
  143. *> LDQ2 is INTEGER
  144. *> The leading dimension of the array Q2. LDQ2 >= max( 1, N ).
  145. *> \endverbatim
  146. *>
  147. *> \param[out] W
  148. *> \verbatim
  149. *> W is REAL array, dimension (N)
  150. *> This will hold the first k values of the final
  151. *> deflation-altered z-vector and will be passed to SLAED3.
  152. *> \endverbatim
  153. *>
  154. *> \param[out] INDXP
  155. *> \verbatim
  156. *> INDXP is INTEGER array, dimension (N)
  157. *> This will contain the permutation used to place deflated
  158. *> values of D at the end of the array. On output INDXP(1:K)
  159. *> points to the nondeflated D-values and INDXP(K+1:N)
  160. *> points to the deflated eigenvalues.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] INDX
  164. *> \verbatim
  165. *> INDX is INTEGER array, dimension (N)
  166. *> This will contain the permutation used to sort the contents of
  167. *> D into ascending order.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] INDXQ
  171. *> \verbatim
  172. *> INDXQ is INTEGER array, dimension (N)
  173. *> This contains the permutation which separately sorts the two
  174. *> sub-problems in D into ascending order. Note that elements in
  175. *> the second half of this permutation must first have CUTPNT
  176. *> added to their values in order to be accurate.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] PERM
  180. *> \verbatim
  181. *> PERM is INTEGER array, dimension (N)
  182. *> Contains the permutations (from deflation and sorting) to be
  183. *> applied to each eigenblock.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] GIVPTR
  187. *> \verbatim
  188. *> GIVPTR is INTEGER
  189. *> Contains the number of Givens rotations which took place in
  190. *> this subproblem.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] GIVCOL
  194. *> \verbatim
  195. *> GIVCOL is INTEGER array, dimension (2, N)
  196. *> Each pair of numbers indicates a pair of columns to take place
  197. *> in a Givens rotation.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] GIVNUM
  201. *> \verbatim
  202. *> GIVNUM is REAL array, dimension (2, N)
  203. *> Each number indicates the S value to be used in the
  204. *> corresponding Givens rotation.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] INFO
  208. *> \verbatim
  209. *> INFO is INTEGER
  210. *> = 0: successful exit.
  211. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  212. *> \endverbatim
  213. *
  214. * Authors:
  215. * ========
  216. *
  217. *> \author Univ. of Tennessee
  218. *> \author Univ. of California Berkeley
  219. *> \author Univ. of Colorado Denver
  220. *> \author NAG Ltd.
  221. *
  222. *> \date December 2016
  223. *
  224. *> \ingroup complexOTHERcomputational
  225. *
  226. * =====================================================================
  227. SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
  228. $ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
  229. $ GIVCOL, GIVNUM, INFO )
  230. *
  231. * -- LAPACK computational routine (version 3.7.0) --
  232. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  233. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  234. * December 2016
  235. *
  236. * .. Scalar Arguments ..
  237. INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
  238. REAL RHO
  239. * ..
  240. * .. Array Arguments ..
  241. INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  242. $ INDXQ( * ), PERM( * )
  243. REAL D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
  244. $ Z( * )
  245. COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
  246. * ..
  247. *
  248. * =====================================================================
  249. *
  250. * .. Parameters ..
  251. REAL MONE, ZERO, ONE, TWO, EIGHT
  252. PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
  253. $ TWO = 2.0E0, EIGHT = 8.0E0 )
  254. * ..
  255. * .. Local Scalars ..
  256. INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
  257. REAL C, EPS, S, T, TAU, TOL
  258. * ..
  259. * .. External Functions ..
  260. INTEGER ISAMAX
  261. REAL SLAMCH, SLAPY2
  262. EXTERNAL ISAMAX, SLAMCH, SLAPY2
  263. * ..
  264. * .. External Subroutines ..
  265. EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
  266. $ XERBLA
  267. * ..
  268. * .. Intrinsic Functions ..
  269. INTRINSIC ABS, MAX, MIN, SQRT
  270. * ..
  271. * .. Executable Statements ..
  272. *
  273. * Test the input parameters.
  274. *
  275. INFO = 0
  276. *
  277. IF( N.LT.0 ) THEN
  278. INFO = -2
  279. ELSE IF( QSIZ.LT.N ) THEN
  280. INFO = -3
  281. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  282. INFO = -5
  283. ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
  284. INFO = -8
  285. ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
  286. INFO = -12
  287. END IF
  288. IF( INFO.NE.0 ) THEN
  289. CALL XERBLA( 'CLAED8', -INFO )
  290. RETURN
  291. END IF
  292. *
  293. * Need to initialize GIVPTR to O here in case of quick exit
  294. * to prevent an unspecified code behavior (usually sigfault)
  295. * when IWORK array on entry to *stedc is not zeroed
  296. * (or at least some IWORK entries which used in *laed7 for GIVPTR).
  297. *
  298. GIVPTR = 0
  299. *
  300. * Quick return if possible
  301. *
  302. IF( N.EQ.0 )
  303. $ RETURN
  304. *
  305. N1 = CUTPNT
  306. N2 = N - N1
  307. N1P1 = N1 + 1
  308. *
  309. IF( RHO.LT.ZERO ) THEN
  310. CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
  311. END IF
  312. *
  313. * Normalize z so that norm(z) = 1
  314. *
  315. T = ONE / SQRT( TWO )
  316. DO 10 J = 1, N
  317. INDX( J ) = J
  318. 10 CONTINUE
  319. CALL SSCAL( N, T, Z, 1 )
  320. RHO = ABS( TWO*RHO )
  321. *
  322. * Sort the eigenvalues into increasing order
  323. *
  324. DO 20 I = CUTPNT + 1, N
  325. INDXQ( I ) = INDXQ( I ) + CUTPNT
  326. 20 CONTINUE
  327. DO 30 I = 1, N
  328. DLAMDA( I ) = D( INDXQ( I ) )
  329. W( I ) = Z( INDXQ( I ) )
  330. 30 CONTINUE
  331. I = 1
  332. J = CUTPNT + 1
  333. CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
  334. DO 40 I = 1, N
  335. D( I ) = DLAMDA( INDX( I ) )
  336. Z( I ) = W( INDX( I ) )
  337. 40 CONTINUE
  338. *
  339. * Calculate the allowable deflation tolerance
  340. *
  341. IMAX = ISAMAX( N, Z, 1 )
  342. JMAX = ISAMAX( N, D, 1 )
  343. EPS = SLAMCH( 'Epsilon' )
  344. TOL = EIGHT*EPS*ABS( D( JMAX ) )
  345. *
  346. * If the rank-1 modifier is small enough, no more needs to be done
  347. * -- except to reorganize Q so that its columns correspond with the
  348. * elements in D.
  349. *
  350. IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  351. K = 0
  352. DO 50 J = 1, N
  353. PERM( J ) = INDXQ( INDX( J ) )
  354. CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  355. 50 CONTINUE
  356. CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
  357. RETURN
  358. END IF
  359. *
  360. * If there are multiple eigenvalues then the problem deflates. Here
  361. * the number of equal eigenvalues are found. As each equal
  362. * eigenvalue is found, an elementary reflector is computed to rotate
  363. * the corresponding eigensubspace so that the corresponding
  364. * components of Z are zero in this new basis.
  365. *
  366. K = 0
  367. K2 = N + 1
  368. DO 60 J = 1, N
  369. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  370. *
  371. * Deflate due to small z component.
  372. *
  373. K2 = K2 - 1
  374. INDXP( K2 ) = J
  375. IF( J.EQ.N )
  376. $ GO TO 100
  377. ELSE
  378. JLAM = J
  379. GO TO 70
  380. END IF
  381. 60 CONTINUE
  382. 70 CONTINUE
  383. J = J + 1
  384. IF( J.GT.N )
  385. $ GO TO 90
  386. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  387. *
  388. * Deflate due to small z component.
  389. *
  390. K2 = K2 - 1
  391. INDXP( K2 ) = J
  392. ELSE
  393. *
  394. * Check if eigenvalues are close enough to allow deflation.
  395. *
  396. S = Z( JLAM )
  397. C = Z( J )
  398. *
  399. * Find sqrt(a**2+b**2) without overflow or
  400. * destructive underflow.
  401. *
  402. TAU = SLAPY2( C, S )
  403. T = D( J ) - D( JLAM )
  404. C = C / TAU
  405. S = -S / TAU
  406. IF( ABS( T*C*S ).LE.TOL ) THEN
  407. *
  408. * Deflation is possible.
  409. *
  410. Z( J ) = TAU
  411. Z( JLAM ) = ZERO
  412. *
  413. * Record the appropriate Givens rotation
  414. *
  415. GIVPTR = GIVPTR + 1
  416. GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
  417. GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
  418. GIVNUM( 1, GIVPTR ) = C
  419. GIVNUM( 2, GIVPTR ) = S
  420. CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
  421. $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
  422. T = D( JLAM )*C*C + D( J )*S*S
  423. D( J ) = D( JLAM )*S*S + D( J )*C*C
  424. D( JLAM ) = T
  425. K2 = K2 - 1
  426. I = 1
  427. 80 CONTINUE
  428. IF( K2+I.LE.N ) THEN
  429. IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
  430. INDXP( K2+I-1 ) = INDXP( K2+I )
  431. INDXP( K2+I ) = JLAM
  432. I = I + 1
  433. GO TO 80
  434. ELSE
  435. INDXP( K2+I-1 ) = JLAM
  436. END IF
  437. ELSE
  438. INDXP( K2+I-1 ) = JLAM
  439. END IF
  440. JLAM = J
  441. ELSE
  442. K = K + 1
  443. W( K ) = Z( JLAM )
  444. DLAMDA( K ) = D( JLAM )
  445. INDXP( K ) = JLAM
  446. JLAM = J
  447. END IF
  448. END IF
  449. GO TO 70
  450. 90 CONTINUE
  451. *
  452. * Record the last eigenvalue.
  453. *
  454. K = K + 1
  455. W( K ) = Z( JLAM )
  456. DLAMDA( K ) = D( JLAM )
  457. INDXP( K ) = JLAM
  458. *
  459. 100 CONTINUE
  460. *
  461. * Sort the eigenvalues and corresponding eigenvectors into DLAMDA
  462. * and Q2 respectively. The eigenvalues/vectors which were not
  463. * deflated go into the first K slots of DLAMDA and Q2 respectively,
  464. * while those which were deflated go into the last N - K slots.
  465. *
  466. DO 110 J = 1, N
  467. JP = INDXP( J )
  468. DLAMDA( J ) = D( JP )
  469. PERM( J ) = INDXQ( INDX( JP ) )
  470. CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  471. 110 CONTINUE
  472. *
  473. * The deflated eigenvalues and their corresponding vectors go back
  474. * into the last N - K slots of D and Q respectively.
  475. *
  476. IF( K.LT.N ) THEN
  477. CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
  478. CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
  479. $ LDQ )
  480. END IF
  481. *
  482. RETURN
  483. *
  484. * End of CLAED8
  485. *
  486. END