You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_geamv.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. *> \brief \b CLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_GEAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_geamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_geamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_geamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  22. * Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, M, N
  27. * INTEGER TRANS
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), X( * )
  31. * REAL Y( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLA_GEAMV performs one of the matrix-vector operations
  41. *>
  42. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  43. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  44. *>
  45. *> where alpha and beta are scalars, x and y are vectors and A is an
  46. *> m by n matrix.
  47. *>
  48. *> This function is primarily used in calculating error bounds.
  49. *> To protect against underflow during evaluation, components in
  50. *> the resulting vector are perturbed away from zero by (N+1)
  51. *> times the underflow threshold. To prevent unnecessarily large
  52. *> errors for block-structure embedded in general matrices,
  53. *> "symbolically" zero components are not perturbed. A zero
  54. *> entry is considered "symbolic" if all multiplications involved
  55. *> in computing that entry have at least one zero multiplicand.
  56. *> \endverbatim
  57. *
  58. * Arguments:
  59. * ==========
  60. *
  61. *> \param[in] TRANS
  62. *> \verbatim
  63. *> TRANS is INTEGER
  64. *> On entry, TRANS specifies the operation to be performed as
  65. *> follows:
  66. *>
  67. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  68. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  69. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  70. *>
  71. *> Unchanged on exit.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> On entry, M specifies the number of rows of the matrix A.
  78. *> M must be at least zero.
  79. *> Unchanged on exit.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] N
  83. *> \verbatim
  84. *> N is INTEGER
  85. *> On entry, N specifies the number of columns of the matrix A.
  86. *> N must be at least zero.
  87. *> Unchanged on exit.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] ALPHA
  91. *> \verbatim
  92. *> ALPHA is REAL
  93. *> On entry, ALPHA specifies the scalar alpha.
  94. *> Unchanged on exit.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,n)
  100. *> Before entry, the leading m by n part of the array A must
  101. *> contain the matrix of coefficients.
  102. *> Unchanged on exit.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> On entry, LDA specifies the first dimension of A as declared
  109. *> in the calling (sub) program. LDA must be at least
  110. *> max( 1, m ).
  111. *> Unchanged on exit.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] X
  115. *> \verbatim
  116. *> X is COMPLEX array, dimension
  117. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  118. *> and at least
  119. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  120. *> Before entry, the incremented array X must contain the
  121. *> vector x.
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] INCX
  126. *> \verbatim
  127. *> INCX is INTEGER
  128. *> On entry, INCX specifies the increment for the elements of
  129. *> X. INCX must not be zero.
  130. *> Unchanged on exit.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] BETA
  134. *> \verbatim
  135. *> BETA is REAL
  136. *> On entry, BETA specifies the scalar beta. When BETA is
  137. *> supplied as zero then Y need not be set on input.
  138. *> Unchanged on exit.
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] Y
  142. *> \verbatim
  143. *> Y is REAL array, dimension
  144. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  145. *> and at least
  146. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  147. *> Before entry with BETA non-zero, the incremented array Y
  148. *> must contain the vector y. On exit, Y is overwritten by the
  149. *> updated vector y.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] INCY
  153. *> \verbatim
  154. *> INCY is INTEGER
  155. *> On entry, INCY specifies the increment for the elements of
  156. *> Y. INCY must not be zero.
  157. *> Unchanged on exit.
  158. *>
  159. *> Level 2 Blas routine.
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Univ. of Tennessee
  166. *> \author Univ. of California Berkeley
  167. *> \author Univ. of Colorado Denver
  168. *> \author NAG Ltd.
  169. *
  170. *> \date December 2016
  171. *
  172. *> \ingroup complexGEcomputational
  173. *
  174. * =====================================================================
  175. SUBROUTINE CLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  176. $ Y, INCY )
  177. *
  178. * -- LAPACK computational routine (version 3.7.0) --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. * December 2016
  182. *
  183. * .. Scalar Arguments ..
  184. REAL ALPHA, BETA
  185. INTEGER INCX, INCY, LDA, M, N
  186. INTEGER TRANS
  187. * ..
  188. * .. Array Arguments ..
  189. COMPLEX A( LDA, * ), X( * )
  190. REAL Y( * )
  191. * ..
  192. *
  193. * =====================================================================
  194. *
  195. * .. Parameters ..
  196. COMPLEX ONE, ZERO
  197. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  198. * ..
  199. * .. Local Scalars ..
  200. LOGICAL SYMB_ZERO
  201. REAL TEMP, SAFE1
  202. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY
  203. COMPLEX CDUM
  204. * ..
  205. * .. External Subroutines ..
  206. EXTERNAL XERBLA, SLAMCH
  207. REAL SLAMCH
  208. * ..
  209. * .. External Functions ..
  210. EXTERNAL ILATRANS
  211. INTEGER ILATRANS
  212. * ..
  213. * .. Intrinsic Functions ..
  214. INTRINSIC MAX, ABS, REAL, AIMAG, SIGN
  215. * ..
  216. * .. Statement Functions ..
  217. REAL CABS1
  218. * ..
  219. * .. Statement Function Definitions ..
  220. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  221. * ..
  222. * .. Executable Statements ..
  223. *
  224. * Test the input parameters.
  225. *
  226. INFO = 0
  227. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  228. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  229. $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  230. INFO = 1
  231. ELSE IF( M.LT.0 )THEN
  232. INFO = 2
  233. ELSE IF( N.LT.0 )THEN
  234. INFO = 3
  235. ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  236. INFO = 6
  237. ELSE IF( INCX.EQ.0 )THEN
  238. INFO = 8
  239. ELSE IF( INCY.EQ.0 )THEN
  240. INFO = 11
  241. END IF
  242. IF( INFO.NE.0 )THEN
  243. CALL XERBLA( 'CLA_GEAMV ', INFO )
  244. RETURN
  245. END IF
  246. *
  247. * Quick return if possible.
  248. *
  249. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  250. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  251. $ RETURN
  252. *
  253. * Set LENX and LENY, the lengths of the vectors x and y, and set
  254. * up the start points in X and Y.
  255. *
  256. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  257. LENX = N
  258. LENY = M
  259. ELSE
  260. LENX = M
  261. LENY = N
  262. END IF
  263. IF( INCX.GT.0 )THEN
  264. KX = 1
  265. ELSE
  266. KX = 1 - ( LENX - 1 )*INCX
  267. END IF
  268. IF( INCY.GT.0 )THEN
  269. KY = 1
  270. ELSE
  271. KY = 1 - ( LENY - 1 )*INCY
  272. END IF
  273. *
  274. * Set SAFE1 essentially to be the underflow threshold times the
  275. * number of additions in each row.
  276. *
  277. SAFE1 = SLAMCH( 'Safe minimum' )
  278. SAFE1 = (N+1)*SAFE1
  279. *
  280. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  281. *
  282. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  283. * the inexact flag. Still doesn't help change the iteration order
  284. * to per-column.
  285. *
  286. IY = KY
  287. IF ( INCX.EQ.1 ) THEN
  288. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  289. DO I = 1, LENY
  290. IF ( BETA .EQ. 0.0 ) THEN
  291. SYMB_ZERO = .TRUE.
  292. Y( IY ) = 0.0
  293. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  294. SYMB_ZERO = .TRUE.
  295. ELSE
  296. SYMB_ZERO = .FALSE.
  297. Y( IY ) = BETA * ABS( Y( IY ) )
  298. END IF
  299. IF ( ALPHA .NE. 0.0 ) THEN
  300. DO J = 1, LENX
  301. TEMP = CABS1( A( I, J ) )
  302. SYMB_ZERO = SYMB_ZERO .AND.
  303. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  304. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  305. END DO
  306. END IF
  307. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  308. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  309. IY = IY + INCY
  310. END DO
  311. ELSE
  312. DO I = 1, LENY
  313. IF ( BETA .EQ. 0.0 ) THEN
  314. SYMB_ZERO = .TRUE.
  315. Y( IY ) = 0.0
  316. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  317. SYMB_ZERO = .TRUE.
  318. ELSE
  319. SYMB_ZERO = .FALSE.
  320. Y( IY ) = BETA * ABS( Y( IY ) )
  321. END IF
  322. IF ( ALPHA .NE. 0.0 ) THEN
  323. DO J = 1, LENX
  324. TEMP = CABS1( A( J, I ) )
  325. SYMB_ZERO = SYMB_ZERO .AND.
  326. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  327. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  328. END DO
  329. END IF
  330. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  331. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  332. IY = IY + INCY
  333. END DO
  334. END IF
  335. ELSE
  336. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  337. DO I = 1, LENY
  338. IF ( BETA .EQ. 0.0 ) THEN
  339. SYMB_ZERO = .TRUE.
  340. Y( IY ) = 0.0
  341. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  342. SYMB_ZERO = .TRUE.
  343. ELSE
  344. SYMB_ZERO = .FALSE.
  345. Y( IY ) = BETA * ABS( Y( IY ) )
  346. END IF
  347. IF ( ALPHA .NE. 0.0 ) THEN
  348. JX = KX
  349. DO J = 1, LENX
  350. TEMP = CABS1( A( I, J ) )
  351. SYMB_ZERO = SYMB_ZERO .AND.
  352. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  353. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  354. JX = JX + INCX
  355. END DO
  356. END IF
  357. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  358. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  359. IY = IY + INCY
  360. END DO
  361. ELSE
  362. DO I = 1, LENY
  363. IF ( BETA .EQ. 0.0 ) THEN
  364. SYMB_ZERO = .TRUE.
  365. Y( IY ) = 0.0
  366. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  367. SYMB_ZERO = .TRUE.
  368. ELSE
  369. SYMB_ZERO = .FALSE.
  370. Y( IY ) = BETA * ABS( Y( IY ) )
  371. END IF
  372. IF ( ALPHA .NE. 0.0 ) THEN
  373. JX = KX
  374. DO J = 1, LENX
  375. TEMP = CABS1( A( J, I ) )
  376. SYMB_ZERO = SYMB_ZERO .AND.
  377. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  378. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  379. JX = JX + INCX
  380. END DO
  381. END IF
  382. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  383. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  384. IY = IY + INCY
  385. END DO
  386. END IF
  387. END IF
  388. *
  389. RETURN
  390. *
  391. * End of CLA_GEAMV
  392. *
  393. END