You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_gbamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. *> \brief \b CLA_GBAMV performs a matrix-vector operation to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_GBAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gbamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gbamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gbamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  22. * INCX, BETA, Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX AB( LDAB, * ), X( * )
  30. * REAL Y( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLA_GBAMV performs one of the matrix-vector operations
  40. *>
  41. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  42. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  43. *>
  44. *> where alpha and beta are scalars, x and y are vectors and A is an
  45. *> m by n matrix.
  46. *>
  47. *> This function is primarily used in calculating error bounds.
  48. *> To protect against underflow during evaluation, components in
  49. *> the resulting vector are perturbed away from zero by (N+1)
  50. *> times the underflow threshold. To prevent unnecessarily large
  51. *> errors for block-structure embedded in general matrices,
  52. *> "symbolically" zero components are not perturbed. A zero
  53. *> entry is considered "symbolic" if all multiplications involved
  54. *> in computing that entry have at least one zero multiplicand.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] TRANS
  61. *> \verbatim
  62. *> TRANS is INTEGER
  63. *> On entry, TRANS specifies the operation to be performed as
  64. *> follows:
  65. *>
  66. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  67. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  68. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  69. *>
  70. *> Unchanged on exit.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> On entry, M specifies the number of rows of the matrix A.
  77. *> M must be at least zero.
  78. *> Unchanged on exit.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> On entry, N specifies the number of columns of the matrix A.
  85. *> N must be at least zero.
  86. *> Unchanged on exit.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] KL
  90. *> \verbatim
  91. *> KL is INTEGER
  92. *> The number of subdiagonals within the band of A. KL >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] KU
  96. *> \verbatim
  97. *> KU is INTEGER
  98. *> The number of superdiagonals within the band of A. KU >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] ALPHA
  102. *> \verbatim
  103. *> ALPHA is REAL
  104. *> On entry, ALPHA specifies the scalar alpha.
  105. *> Unchanged on exit.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] AB
  109. *> \verbatim
  110. *> AB is COMPLEX array, dimension (LDAB,n)
  111. *> Before entry, the leading m by n part of the array AB must
  112. *> contain the matrix of coefficients.
  113. *> Unchanged on exit.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDAB
  117. *> \verbatim
  118. *> LDAB is INTEGER
  119. *> On entry, LDAB specifies the first dimension of AB as declared
  120. *> in the calling (sub) program. LDAB must be at least
  121. *> max( 1, m ).
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] X
  126. *> \verbatim
  127. *> X is COMPLEX array, dimension
  128. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  129. *> and at least
  130. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  131. *> Before entry, the incremented array X must contain the
  132. *> vector x.
  133. *> Unchanged on exit.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] INCX
  137. *> \verbatim
  138. *> INCX is INTEGER
  139. *> On entry, INCX specifies the increment for the elements of
  140. *> X. INCX must not be zero.
  141. *> Unchanged on exit.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] BETA
  145. *> \verbatim
  146. *> BETA is REAL
  147. *> On entry, BETA specifies the scalar beta. When BETA is
  148. *> supplied as zero then Y need not be set on input.
  149. *> Unchanged on exit.
  150. *> \endverbatim
  151. *>
  152. *> \param[in,out] Y
  153. *> \verbatim
  154. *> Y is REAL array, dimension
  155. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  156. *> and at least
  157. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  158. *> Before entry with BETA non-zero, the incremented array Y
  159. *> must contain the vector y. On exit, Y is overwritten by the
  160. *> updated vector y.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] INCY
  164. *> \verbatim
  165. *> INCY is INTEGER
  166. *> On entry, INCY specifies the increment for the elements of
  167. *> Y. INCY must not be zero.
  168. *> Unchanged on exit.
  169. *>
  170. *> Level 2 Blas routine.
  171. *> \endverbatim
  172. *
  173. * Authors:
  174. * ========
  175. *
  176. *> \author Univ. of Tennessee
  177. *> \author Univ. of California Berkeley
  178. *> \author Univ. of Colorado Denver
  179. *> \author NAG Ltd.
  180. *
  181. *> \date June 2016
  182. *
  183. *> \ingroup complexGBcomputational
  184. *
  185. * =====================================================================
  186. SUBROUTINE CLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  187. $ INCX, BETA, Y, INCY )
  188. *
  189. * -- LAPACK computational routine (version 3.7.0) --
  190. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  191. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192. * June 2016
  193. *
  194. * .. Scalar Arguments ..
  195. REAL ALPHA, BETA
  196. INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  197. * ..
  198. * .. Array Arguments ..
  199. COMPLEX AB( LDAB, * ), X( * )
  200. REAL Y( * )
  201. * ..
  202. *
  203. * =====================================================================
  204. *
  205. * .. Parameters ..
  206. COMPLEX ONE, ZERO
  207. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  208. * ..
  209. * .. Local Scalars ..
  210. LOGICAL SYMB_ZERO
  211. REAL TEMP, SAFE1
  212. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
  213. COMPLEX CDUM
  214. * ..
  215. * .. External Subroutines ..
  216. EXTERNAL XERBLA, SLAMCH
  217. REAL SLAMCH
  218. * ..
  219. * .. External Functions ..
  220. EXTERNAL ILATRANS
  221. INTEGER ILATRANS
  222. * ..
  223. * .. Intrinsic Functions ..
  224. INTRINSIC MAX, ABS, REAL, AIMAG, SIGN
  225. * ..
  226. * .. Statement Functions
  227. REAL CABS1
  228. * ..
  229. * .. Statement Function Definitions ..
  230. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Test the input parameters.
  235. *
  236. INFO = 0
  237. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  238. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  239. $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  240. INFO = 1
  241. ELSE IF( M.LT.0 )THEN
  242. INFO = 2
  243. ELSE IF( N.LT.0 )THEN
  244. INFO = 3
  245. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  246. INFO = 4
  247. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  248. INFO = 5
  249. ELSE IF( LDAB.LT.KL+KU+1 )THEN
  250. INFO = 6
  251. ELSE IF( INCX.EQ.0 )THEN
  252. INFO = 8
  253. ELSE IF( INCY.EQ.0 )THEN
  254. INFO = 11
  255. END IF
  256. IF( INFO.NE.0 )THEN
  257. CALL XERBLA( 'CLA_GBAMV ', INFO )
  258. RETURN
  259. END IF
  260. *
  261. * Quick return if possible.
  262. *
  263. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  264. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  265. $ RETURN
  266. *
  267. * Set LENX and LENY, the lengths of the vectors x and y, and set
  268. * up the start points in X and Y.
  269. *
  270. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  271. LENX = N
  272. LENY = M
  273. ELSE
  274. LENX = M
  275. LENY = N
  276. END IF
  277. IF( INCX.GT.0 )THEN
  278. KX = 1
  279. ELSE
  280. KX = 1 - ( LENX - 1 )*INCX
  281. END IF
  282. IF( INCY.GT.0 )THEN
  283. KY = 1
  284. ELSE
  285. KY = 1 - ( LENY - 1 )*INCY
  286. END IF
  287. *
  288. * Set SAFE1 essentially to be the underflow threshold times the
  289. * number of additions in each row.
  290. *
  291. SAFE1 = SLAMCH( 'Safe minimum' )
  292. SAFE1 = (N+1)*SAFE1
  293. *
  294. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  295. *
  296. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  297. * the inexact flag. Still doesn't help change the iteration order
  298. * to per-column.
  299. *
  300. KD = KU + 1
  301. KE = KL + 1
  302. IY = KY
  303. IF ( INCX.EQ.1 ) THEN
  304. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  305. DO I = 1, LENY
  306. IF ( BETA .EQ. 0.0 ) THEN
  307. SYMB_ZERO = .TRUE.
  308. Y( IY ) = 0.0
  309. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  310. SYMB_ZERO = .TRUE.
  311. ELSE
  312. SYMB_ZERO = .FALSE.
  313. Y( IY ) = BETA * ABS( Y( IY ) )
  314. END IF
  315. IF ( ALPHA .NE. 0.0 ) THEN
  316. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  317. TEMP = CABS1( AB( KD+I-J, J ) )
  318. SYMB_ZERO = SYMB_ZERO .AND.
  319. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  320. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  321. END DO
  322. END IF
  323. IF ( .NOT.SYMB_ZERO)
  324. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  325. IY = IY + INCY
  326. END DO
  327. ELSE
  328. DO I = 1, LENY
  329. IF ( BETA .EQ. 0.0 ) THEN
  330. SYMB_ZERO = .TRUE.
  331. Y( IY ) = 0.0
  332. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  333. SYMB_ZERO = .TRUE.
  334. ELSE
  335. SYMB_ZERO = .FALSE.
  336. Y( IY ) = BETA * ABS( Y( IY ) )
  337. END IF
  338. IF ( ALPHA .NE. 0.0 ) THEN
  339. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  340. TEMP = CABS1( AB( KE-I+J, I ) )
  341. SYMB_ZERO = SYMB_ZERO .AND.
  342. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  343. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  344. END DO
  345. END IF
  346. IF ( .NOT.SYMB_ZERO)
  347. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  348. IY = IY + INCY
  349. END DO
  350. END IF
  351. ELSE
  352. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  353. DO I = 1, LENY
  354. IF ( BETA .EQ. 0.0 ) THEN
  355. SYMB_ZERO = .TRUE.
  356. Y( IY ) = 0.0
  357. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  358. SYMB_ZERO = .TRUE.
  359. ELSE
  360. SYMB_ZERO = .FALSE.
  361. Y( IY ) = BETA * ABS( Y( IY ) )
  362. END IF
  363. IF ( ALPHA .NE. 0.0 ) THEN
  364. JX = KX
  365. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  366. TEMP = CABS1( AB( KD+I-J, J ) )
  367. SYMB_ZERO = SYMB_ZERO .AND.
  368. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  369. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  370. JX = JX + INCX
  371. END DO
  372. END IF
  373. IF ( .NOT.SYMB_ZERO )
  374. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  375. IY = IY + INCY
  376. END DO
  377. ELSE
  378. DO I = 1, LENY
  379. IF ( BETA .EQ. 0.0 ) THEN
  380. SYMB_ZERO = .TRUE.
  381. Y( IY ) = 0.0
  382. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  383. SYMB_ZERO = .TRUE.
  384. ELSE
  385. SYMB_ZERO = .FALSE.
  386. Y( IY ) = BETA * ABS( Y( IY ) )
  387. END IF
  388. IF ( ALPHA .NE. 0.0 ) THEN
  389. JX = KX
  390. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  391. TEMP = CABS1( AB( KE-I+J, I ) )
  392. SYMB_ZERO = SYMB_ZERO .AND.
  393. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  394. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  395. JX = JX + INCX
  396. END DO
  397. END IF
  398. IF ( .NOT.SYMB_ZERO )
  399. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  400. IY = IY + INCY
  401. END DO
  402. END IF
  403. END IF
  404. *
  405. RETURN
  406. *
  407. * End of CLA_GBAMV
  408. *
  409. END