|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695 |
- *> \brief <b> ZGESVD computes the singular value decomposition (SVD) for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download ZGESVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
- * WORK, LWORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBU, JOBVT
- * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION RWORK( * ), S( * )
- * COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGESVD computes the singular value decomposition (SVD) of a complex
- *> M-by-N matrix A, optionally computing the left and/or right singular
- *> vectors. The SVD is written
- *>
- *> A = U * SIGMA * conjugate-transpose(V)
- *>
- *> where SIGMA is an M-by-N matrix which is zero except for its
- *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
- *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
- *> are the singular values of A; they are real and non-negative, and
- *> are returned in descending order. The first min(m,n) columns of
- *> U and V are the left and right singular vectors of A.
- *>
- *> Note that the routine returns V**H, not V.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU
- *> \verbatim
- *> JOBU is CHARACTER*1
- *> Specifies options for computing all or part of the matrix U:
- *> = 'A': all M columns of U are returned in array U:
- *> = 'S': the first min(m,n) columns of U (the left singular
- *> vectors) are returned in the array U;
- *> = 'O': the first min(m,n) columns of U (the left singular
- *> vectors) are overwritten on the array A;
- *> = 'N': no columns of U (no left singular vectors) are
- *> computed.
- *> \endverbatim
- *>
- *> \param[in] JOBVT
- *> \verbatim
- *> JOBVT is CHARACTER*1
- *> Specifies options for computing all or part of the matrix
- *> V**H:
- *> = 'A': all N rows of V**H are returned in the array VT;
- *> = 'S': the first min(m,n) rows of V**H (the right singular
- *> vectors) are returned in the array VT;
- *> = 'O': the first min(m,n) rows of V**H (the right singular
- *> vectors) are overwritten on the array A;
- *> = 'N': no rows of V**H (no right singular vectors) are
- *> computed.
- *>
- *> JOBVT and JOBU cannot both be 'O'.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the input matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the input matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit,
- *> if JOBU = 'O', A is overwritten with the first min(m,n)
- *> columns of U (the left singular vectors,
- *> stored columnwise);
- *> if JOBVT = 'O', A is overwritten with the first min(m,n)
- *> rows of V**H (the right singular vectors,
- *> stored rowwise);
- *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
- *> are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (min(M,N))
- *> The singular values of A, sorted so that S(i) >= S(i+1).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU,UCOL)
- *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
- *> If JOBU = 'A', U contains the M-by-M unitary matrix U;
- *> if JOBU = 'S', U contains the first min(m,n) columns of U
- *> (the left singular vectors, stored columnwise);
- *> if JOBU = 'N' or 'O', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= 1; if
- *> JOBU = 'S' or 'A', LDU >= M.
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is COMPLEX*16 array, dimension (LDVT,N)
- *> If JOBVT = 'A', VT contains the N-by-N unitary matrix
- *> V**H;
- *> if JOBVT = 'S', VT contains the first min(m,n) rows of
- *> V**H (the right singular vectors, stored rowwise);
- *> if JOBVT = 'N' or 'O', VT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT. LDVT >= 1; if
- *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).
- *> For good performance, LWORK should generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
- *> On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
- *> unconverged superdiagonal elements of an upper bidiagonal
- *> matrix B whose diagonal is in S (not necessarily sorted).
- *> B satisfies A = U * B * VT, so it has the same singular
- *> values as A, and singular vectors related by U and VT.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if ZBDSQR did not converge, INFO specifies how many
- *> superdiagonals of an intermediate bidiagonal form B
- *> did not converge to zero. See the description of RWORK
- *> above for details.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup complex16GEsing
- *
- * =====================================================================
- SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU,
- $ VT, LDVT, WORK, LWORK, RWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.6.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER JOBU, JOBVT
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION RWORK( * ), S( * )
- COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
- $ CONE = ( 1.0D0, 0.0D0 ) )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
- $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
- INTEGER BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL,
- $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
- $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
- $ NRVT, WRKBL
- INTEGER LWORK_ZGEQRF, LWORK_ZUNGQR_N, LWORK_ZUNGQR_M,
- $ LWORK_ZGEBRD, LWORK_ZUNGBR_P, LWORK_ZUNGBR_Q,
- $ LWORK_ZGELQF, LWORK_ZUNGLQ_N, LWORK_ZUNGLQ_M
- DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUM( 1 )
- COMPLEX*16 CDUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASCL, XERBLA, ZBDSQR, ZGEBRD, ZGELQF, ZGEMM,
- $ ZGEQRF, ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNGLQ,
- $ ZUNGQR, ZUNMBR
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- MINMN = MIN( M, N )
- WNTUA = LSAME( JOBU, 'A' )
- WNTUS = LSAME( JOBU, 'S' )
- WNTUAS = WNTUA .OR. WNTUS
- WNTUO = LSAME( JOBU, 'O' )
- WNTUN = LSAME( JOBU, 'N' )
- WNTVA = LSAME( JOBVT, 'A' )
- WNTVS = LSAME( JOBVT, 'S' )
- WNTVAS = WNTVA .OR. WNTVS
- WNTVO = LSAME( JOBVT, 'O' )
- WNTVN = LSAME( JOBVT, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
- $ ( WNTVO .AND. WNTUO ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
- INFO = -9
- ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
- $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
- INFO = -11
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to
- * real workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.)
- *
- IF( INFO.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- IF( M.GE.N .AND. MINMN.GT.0 ) THEN
- *
- * Space needed for ZBDSQR is BDSPAC = 5*N
- *
- MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, 0 )
- * Compute space needed for ZGEQRF
- CALL ZGEQRF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEQRF=CDUM(1)
- * Compute space needed for ZUNGQR
- CALL ZUNGQR( M, N, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZUNGQR_N=CDUM(1)
- CALL ZUNGQR( M, M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZUNGQR_M=CDUM(1)
- * Compute space needed for ZGEBRD
- CALL ZGEBRD( N, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD=CDUM(1)
- * Compute space needed for ZUNGBR
- CALL ZUNGBR( 'P', N, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_P=CDUM(1)
- CALL ZUNGBR( 'Q', N, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_Q=CDUM(1)
- *
- IF( M.GE.MNTHR ) THEN
- IF( WNTUN ) THEN
- *
- * Path 1 (M much larger than N, JOBU='N')
- *
- MAXWRK = N + LWORK_ZGEQRF
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZGEBRD )
- IF( WNTVO .OR. WNTVAS )
- $ MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_P )
- MINWRK = 3*N
- ELSE IF( WNTUO .AND. WNTVN ) THEN
- *
- * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
- MINWRK = 2*N + M
- ELSE IF( WNTUO .AND. WNTVAS ) THEN
- *
- * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
- MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVN ) THEN
- *
- * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVO ) THEN
- *
- * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
- MAXWRK = 2*N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVAS ) THEN
- *
- * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVN ) THEN
- *
- * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVO ) THEN
- *
- * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
- MAXWRK = 2*N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVAS ) THEN
- *
- * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_ZGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- END IF
- ELSE
- *
- * Path 10 (M at least N, but not much larger)
- *
- CALL ZGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD=CDUM(1)
- MAXWRK = 2*N + LWORK_ZGEBRD
- IF( WNTUS .OR. WNTUO ) THEN
- CALL ZUNGBR( 'Q', M, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_Q=CDUM(1)
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_Q )
- END IF
- IF( WNTUA ) THEN
- CALL ZUNGBR( 'Q', M, M, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_Q=CDUM(1)
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_Q )
- END IF
- IF( .NOT.WNTVN ) THEN
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_P )
- MINWRK = 2*N + M
- END IF
- END IF
- ELSE IF( MINMN.GT.0 ) THEN
- *
- * Space needed for ZBDSQR is BDSPAC = 5*M
- *
- MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, 0 )
- * Compute space needed for ZGELQF
- CALL ZGELQF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGELQF=CDUM(1)
- * Compute space needed for ZUNGLQ
- CALL ZUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1), -1,
- $ IERR )
- LWORK_ZUNGLQ_N=CDUM(1)
- CALL ZUNGLQ( M, N, M, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZUNGLQ_M=CDUM(1)
- * Compute space needed for ZGEBRD
- CALL ZGEBRD( M, M, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD=CDUM(1)
- * Compute space needed for ZUNGBR P
- CALL ZUNGBR( 'P', M, M, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_P=CDUM(1)
- * Compute space needed for ZUNGBR Q
- CALL ZUNGBR( 'Q', M, M, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_Q=CDUM(1)
- IF( N.GE.MNTHR ) THEN
- IF( WNTVN ) THEN
- *
- * Path 1t(N much larger than M, JOBVT='N')
- *
- MAXWRK = M + LWORK_ZGELQF
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZGEBRD )
- IF( WNTUO .OR. WNTUAS )
- $ MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_Q )
- MINWRK = 3*M
- ELSE IF( WNTVO .AND. WNTUN ) THEN
- *
- * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
- MINWRK = 2*M + N
- ELSE IF( WNTVO .AND. WNTUAS ) THEN
- *
- * Path 3t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='O')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
- MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUN ) THEN
- *
- * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUO ) THEN
- *
- * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
- MAXWRK = 2*M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUAS ) THEN
- *
- * Path 6t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='S')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUN ) THEN
- *
- * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUO ) THEN
- *
- * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
- MAXWRK = 2*M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUAS ) THEN
- *
- * Path 9t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='A')
- *
- WRKBL = M + LWORK_ZGELQF
- WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- END IF
- ELSE
- *
- * Path 10t(N greater than M, but not much larger)
- *
- CALL ZGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_ZGEBRD=CDUM(1)
- MAXWRK = 2*M + LWORK_ZGEBRD
- IF( WNTVS .OR. WNTVO ) THEN
- * Compute space needed for ZUNGBR P
- CALL ZUNGBR( 'P', M, N, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_P=CDUM(1)
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_P )
- END IF
- IF( WNTVA ) THEN
- CALL ZUNGBR( 'P', N, N, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_ZUNGBR_P=CDUM(1)
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_P )
- END IF
- IF( .NOT.WNTUN ) THEN
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_Q )
- MINWRK = 2*M + N
- END IF
- END IF
- END IF
- MAXWRK = MAX( MAXWRK, MINWRK )
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZGESVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ISCL = 1
- CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ISCL = 1
- CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * A has at least as many rows as columns. If A has sufficiently
- * more rows than columns, first reduce using the QR
- * decomposition (if sufficient workspace available)
- *
- IF( M.GE.MNTHR ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 1 (M much larger than N, JOBU='N')
- * No left singular vectors to be computed
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: need 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Zero out below R
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- NCVT = 0
- IF( WNTVO .OR. WNTVAS ) THEN
- *
- * If right singular vectors desired, generate P'.
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- NCVT = N
- END IF
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in A if desired
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA,
- $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- * If right singular vectors desired in VT, copy them there
- *
- IF( WNTVAS )
- $ CALL ZLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- ELSE IF( WNTUO .AND. WNTVN ) THEN
- *
- * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
- * N left singular vectors to be overwritten on A and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N, WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
- *
- * WORK(IU) is LDA by N, WORK(IR) is N by N
- *
- LDWRKU = LDA
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is LDWRKU by N, WORK(IR) is N by N
- *
- LDWRKU = ( LWORK-N*N ) / N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IR) and zero out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing R
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: need 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1,
- $ WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in WORK(IU) and copying to A
- * (CWorkspace: need N*N+N, prefer N*N+M*N)
- * (RWorkspace: 0)
- *
- DO 10 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IR ), LDWRKR, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 10 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- * (RWorkspace: N)
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing A
- * (CWorkspace: need 3*N, prefer 2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A
- * (CWorkspace: need 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1,
- $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO .AND. WNTVAS ) THEN
- *
- * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
- * N left singular vectors to be overwritten on A and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is LDWRKU by N and WORK(IR) is N by N
- *
- LDWRKU = ( LWORK-N*N ) / N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT, copying result to WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
- *
- * Generate left vectors bidiagonalizing R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in VT
- * (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR) and computing right
- * singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in WORK(IU) and copying to A
- * (CWorkspace: need N*N+N, prefer N*N+M*N)
- * (RWorkspace: 0)
- *
- DO 20 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IR ), LDWRKR, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 20 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- *
- * Generate Q in A
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: N)
- *
- CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in A by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTUS ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
- * N left singular vectors to be computed in U and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IR) is LDA by N
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
- $ 1, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IR ), LDWRKR, CZERO, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
- $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVO ) THEN
- *
- * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is N by N and WORK(IR) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*N*N+3*N,
- * prefer 2*N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*N*N+3*N-1,
- * prefer 2*N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in WORK(IR)
- * (CWorkspace: need 2*N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, WORK( IU ),
- $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IU ), LDWRKU, CZERO, U, LDU )
- *
- * Copy right singular vectors of R to A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVAS ) THEN
- *
- * Path 6 (M much larger than N, JOBU='S', JOBVT='S'
- * or 'A')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- END IF
- ITAU = IU + LDWRKU*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to VT
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
- $ LDVT )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need N*N+3*N-1,
- * prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IU ), LDWRKU, CZERO, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in VT
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- ELSE IF( WNTUA ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
- * M left singular vectors to be computed in U and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IR) is LDA by N
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in U
- * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
- $ 1, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IR), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IR ), LDWRKR, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in A
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
- $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVO ) THEN
- *
- * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is N by N and WORK(IR) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*N*N+3*N,
- * prefer 2*N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*N*N+3*N-1,
- * prefer 2*N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in WORK(IR)
- * (CWorkspace: need 2*N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, WORK( IU ),
- $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IU ), LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- * Copy right singular vectors of R from WORK(IR) to A
- *
- CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in A
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVAS ) THEN
- *
- * Path 9 (M much larger than N, JOBU='A', JOBVT='S'
- * or 'A')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- END IF
- ITAU = IU + LDWRKU*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to VT
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
- $ LDVT )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need N*N+3*N-1,
- * prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: need 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IU ), LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R from A to VT, zeroing out below it
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in VT
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * M .LT. MNTHR
- *
- * Path 10 (M at least N, but not much larger)
- * Reduce to bidiagonal form without QR decomposition
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- * (RWorkspace: need N)
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUAS ) THEN
- *
- * If left singular vectors desired in U, copy result to U
- * and generate left bidiagonalizing vectors in U
- * (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
- IF( WNTUS )
- $ NCU = N
- IF( WNTUA )
- $ NCU = M
- CALL ZUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVAS ) THEN
- *
- * If right singular vectors desired in VT, copy result to
- * VT and generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTUO ) THEN
- *
- * If left singular vectors desired in A, generate left
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*N, prefer 2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVO ) THEN
- *
- * If right singular vectors desired in A, generate right
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + N
- IF( WNTUAS .OR. WNTUO )
- $ NRU = M
- IF( WNTUN )
- $ NRU = 0
- IF( WNTVAS .OR. WNTVO )
- $ NCVT = N
- IF( WNTVN )
- $ NCVT = 0
- IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in A and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- END IF
- *
- END IF
- *
- ELSE
- *
- * A has more columns than rows. If A has sufficiently more
- * columns than rows, first reduce using the LQ decomposition (if
- * sufficient workspace available)
- *
- IF( N.GE.MNTHR ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 1t(N much larger than M, JOBVT='N')
- * No right singular vectors to be computed
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Zero out above L
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUO .OR. WNTUAS ) THEN
- *
- * If left singular vectors desired, generate Q
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + M
- NRU = 0
- IF( WNTUO .OR. WNTUAS )
- $ NRU = M
- *
- * Perform bidiagonal QR iteration, computing left singular
- * vectors of A in A if desired
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1,
- $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- * If left singular vectors desired in U, copy them there
- *
- IF( WNTUAS )
- $ CALL ZLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- ELSE IF( WNTVO .AND. WNTUN ) THEN
- *
- * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
- * M right singular vectors to be overwritten on A and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is M by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by CHUNK and WORK(IR) is M by M
- *
- LDWRKU = M
- CHUNK = ( LWORK-M*M ) / M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IR) and zero out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing L
- * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply right singular vectors of L in WORK(IR) by Q
- * in A, storing result in WORK(IU) and copying to A
- * (CWorkspace: need M*M+M, prefer M*M+M*N)
- * (RWorkspace: 0)
- *
- DO 30 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
- $ LDWRKR, A( 1, I ), LDA, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
- $ A( 1, I ), LDA )
- 30 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA,
- $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTVO .AND. WNTUAS ) THEN
- *
- * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
- * M right singular vectors to be overwritten on A and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is M by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by CHUNK and WORK(IR) is M by M
- *
- LDWRKU = M
- CHUNK = ( LWORK-M*M ) / M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing about above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
- $ LDU )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U, copying result to WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
- *
- * Generate right vectors bidiagonalizing L in WORK(IR)
- * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing L in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U, and computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply right singular vectors of L in WORK(IR) by Q
- * in A, storing result in WORK(IU) and copying to A
- * (CWorkspace: need M*M+M, prefer M*M+M*N))
- * (RWorkspace: 0)
- *
- DO 40 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
- $ LDWRKR, A( 1, I ), LDA, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
- $ A( 1, I ), LDA )
- 40 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
- $ LDU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in A
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing L in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA,
- $ U, LDU, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTVS ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
- * M right singular vectors to be computed in VT and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IR) is LDA by M
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is M by M
- *
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IR), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing L in
- * WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IR) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
- $ LDWRKR, A, LDA, CZERO, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy result to VT
- *
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
- $ LDVT, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO ) THEN
- *
- * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is M by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by M and WORK(IR) is M by M
- *
- LDWRKU = M
- IR = IU + LDWRKU*M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out below it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*M*M+3*M,
- * prefer 2*M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*M*M+3*M-1,
- * prefer 2*M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in WORK(IR) and computing
- * right singular vectors of L in WORK(IU)
- * (CWorkspace: need 2*M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, WORK( IR ),
- $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, A, LDA, CZERO, VT, LDVT )
- *
- * Copy left singular vectors of L to A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors of L in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUAS ) THEN
- *
- * Path 6t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is LDA by M
- *
- LDWRKU = M
- END IF
- ITAU = IU + LDWRKU*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
- $ LDU )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need M*M+3*M-1,
- * prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U and computing right
- * singular vectors of L in WORK(IU)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, A, LDA, CZERO, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ U( 1, 2 ), LDU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in U by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- ELSE IF( WNTVA ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
- * N right singular vectors to be computed in VT and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IR) is LDA by M
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is M by M
- *
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Copy L to WORK(IR), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in VT
- * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need M*M+3*M-1,
- * prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IR) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
- $ LDWRKR, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in A by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
- $ LDVT, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO ) THEN
- *
- * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is M by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by M and WORK(IR) is M by M
- *
- LDWRKU = M
- IR = IU + LDWRKU*M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*M*M+3*M,
- * prefer 2*M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*M*M+3*M-1,
- * prefer 2*M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in WORK(IR) and computing
- * right singular vectors of L in WORK(IU)
- * (CWorkspace: need 2*M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, WORK( IR ),
- $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- * Copy left singular vectors of A from WORK(IR) to A
- *
- CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in A by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUAS ) THEN
- *
- * Path 9t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IU) is LDA by M
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is M by M
- *
- LDWRKU = M
- END IF
- ITAU = IU + LDWRKU*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
- $ LDU )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U and computing right
- * singular vectors of L in WORK(IU)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ U( 1, 2 ), LDU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in U by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * N .LT. MNTHR
- *
- * Path 10t(N greater than M, but not much larger)
- * Reduce to bidiagonal form without LQ decomposition
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- * (RWorkspace: M)
- *
- CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUAS ) THEN
- *
- * If left singular vectors desired in U, copy result to U
- * and generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVAS ) THEN
- *
- * If right singular vectors desired in VT, copy result to
- * VT and generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB)
- * (RWorkspace: 0)
- *
- CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
- IF( WNTVA )
- $ NRVT = N
- IF( WNTVS )
- $ NRVT = M
- CALL ZUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTUO ) THEN
- *
- * If left singular vectors desired in A, generate left
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVO ) THEN
- *
- * If right singular vectors desired in A, generate right
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + M
- IF( WNTUAS .OR. WNTUO )
- $ NRU = M
- IF( WNTUN )
- $ NRU = 0
- IF( WNTVAS .OR. WNTVO )
- $ NCVT = N
- IF( WNTVN )
- $ NCVT = 0
- IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in A and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- END IF
- *
- END IF
- *
- END IF
- *
- * Undo scaling if necessary
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM )
- $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
- $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- IF( ANRM.LT.SMLNUM )
- $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
- $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- END IF
- *
- * Return optimal workspace in WORK(1)
- *
- WORK( 1 ) = MAXWRK
- *
- RETURN
- *
- * End of ZGESVD
- *
- END
|