You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgesvd.f 142 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695
  1. *> \brief <b> ZGESVD computes the singular value decomposition (SVD) for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGESVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
  22. * WORK, LWORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBU, JOBVT
  26. * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * ), S( * )
  30. * COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  31. * $ WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZGESVD computes the singular value decomposition (SVD) of a complex
  41. *> M-by-N matrix A, optionally computing the left and/or right singular
  42. *> vectors. The SVD is written
  43. *>
  44. *> A = U * SIGMA * conjugate-transpose(V)
  45. *>
  46. *> where SIGMA is an M-by-N matrix which is zero except for its
  47. *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
  48. *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
  49. *> are the singular values of A; they are real and non-negative, and
  50. *> are returned in descending order. The first min(m,n) columns of
  51. *> U and V are the left and right singular vectors of A.
  52. *>
  53. *> Note that the routine returns V**H, not V.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] JOBU
  60. *> \verbatim
  61. *> JOBU is CHARACTER*1
  62. *> Specifies options for computing all or part of the matrix U:
  63. *> = 'A': all M columns of U are returned in array U:
  64. *> = 'S': the first min(m,n) columns of U (the left singular
  65. *> vectors) are returned in the array U;
  66. *> = 'O': the first min(m,n) columns of U (the left singular
  67. *> vectors) are overwritten on the array A;
  68. *> = 'N': no columns of U (no left singular vectors) are
  69. *> computed.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] JOBVT
  73. *> \verbatim
  74. *> JOBVT is CHARACTER*1
  75. *> Specifies options for computing all or part of the matrix
  76. *> V**H:
  77. *> = 'A': all N rows of V**H are returned in the array VT;
  78. *> = 'S': the first min(m,n) rows of V**H (the right singular
  79. *> vectors) are returned in the array VT;
  80. *> = 'O': the first min(m,n) rows of V**H (the right singular
  81. *> vectors) are overwritten on the array A;
  82. *> = 'N': no rows of V**H (no right singular vectors) are
  83. *> computed.
  84. *>
  85. *> JOBVT and JOBU cannot both be 'O'.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] M
  89. *> \verbatim
  90. *> M is INTEGER
  91. *> The number of rows of the input matrix A. M >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] N
  95. *> \verbatim
  96. *> N is INTEGER
  97. *> The number of columns of the input matrix A. N >= 0.
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] A
  101. *> \verbatim
  102. *> A is COMPLEX*16 array, dimension (LDA,N)
  103. *> On entry, the M-by-N matrix A.
  104. *> On exit,
  105. *> if JOBU = 'O', A is overwritten with the first min(m,n)
  106. *> columns of U (the left singular vectors,
  107. *> stored columnwise);
  108. *> if JOBVT = 'O', A is overwritten with the first min(m,n)
  109. *> rows of V**H (the right singular vectors,
  110. *> stored rowwise);
  111. *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
  112. *> are destroyed.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of the array A. LDA >= max(1,M).
  119. *> \endverbatim
  120. *>
  121. *> \param[out] S
  122. *> \verbatim
  123. *> S is DOUBLE PRECISION array, dimension (min(M,N))
  124. *> The singular values of A, sorted so that S(i) >= S(i+1).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] U
  128. *> \verbatim
  129. *> U is COMPLEX*16 array, dimension (LDU,UCOL)
  130. *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
  131. *> If JOBU = 'A', U contains the M-by-M unitary matrix U;
  132. *> if JOBU = 'S', U contains the first min(m,n) columns of U
  133. *> (the left singular vectors, stored columnwise);
  134. *> if JOBU = 'N' or 'O', U is not referenced.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDU
  138. *> \verbatim
  139. *> LDU is INTEGER
  140. *> The leading dimension of the array U. LDU >= 1; if
  141. *> JOBU = 'S' or 'A', LDU >= M.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] VT
  145. *> \verbatim
  146. *> VT is COMPLEX*16 array, dimension (LDVT,N)
  147. *> If JOBVT = 'A', VT contains the N-by-N unitary matrix
  148. *> V**H;
  149. *> if JOBVT = 'S', VT contains the first min(m,n) rows of
  150. *> V**H (the right singular vectors, stored rowwise);
  151. *> if JOBVT = 'N' or 'O', VT is not referenced.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDVT
  155. *> \verbatim
  156. *> LDVT is INTEGER
  157. *> The leading dimension of the array VT. LDVT >= 1; if
  158. *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
  159. *> \endverbatim
  160. *>
  161. *> \param[out] WORK
  162. *> \verbatim
  163. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  164. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] LWORK
  168. *> \verbatim
  169. *> LWORK is INTEGER
  170. *> The dimension of the array WORK.
  171. *> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).
  172. *> For good performance, LWORK should generally be larger.
  173. *>
  174. *> If LWORK = -1, then a workspace query is assumed; the routine
  175. *> only calculates the optimal size of the WORK array, returns
  176. *> this value as the first entry of the WORK array, and no error
  177. *> message related to LWORK is issued by XERBLA.
  178. *> \endverbatim
  179. *>
  180. *> \param[out] RWORK
  181. *> \verbatim
  182. *> RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
  183. *> On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
  184. *> unconverged superdiagonal elements of an upper bidiagonal
  185. *> matrix B whose diagonal is in S (not necessarily sorted).
  186. *> B satisfies A = U * B * VT, so it has the same singular
  187. *> values as A, and singular vectors related by U and VT.
  188. *> \endverbatim
  189. *>
  190. *> \param[out] INFO
  191. *> \verbatim
  192. *> INFO is INTEGER
  193. *> = 0: successful exit.
  194. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  195. *> > 0: if ZBDSQR did not converge, INFO specifies how many
  196. *> superdiagonals of an intermediate bidiagonal form B
  197. *> did not converge to zero. See the description of RWORK
  198. *> above for details.
  199. *> \endverbatim
  200. *
  201. * Authors:
  202. * ========
  203. *
  204. *> \author Univ. of Tennessee
  205. *> \author Univ. of California Berkeley
  206. *> \author Univ. of Colorado Denver
  207. *> \author NAG Ltd.
  208. *
  209. *> \date April 2012
  210. *
  211. *> \ingroup complex16GEsing
  212. *
  213. * =====================================================================
  214. SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU,
  215. $ VT, LDVT, WORK, LWORK, RWORK, INFO )
  216. *
  217. * -- LAPACK driver routine (version 3.6.0) --
  218. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  219. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220. * April 2012
  221. *
  222. * .. Scalar Arguments ..
  223. CHARACTER JOBU, JOBVT
  224. INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
  225. * ..
  226. * .. Array Arguments ..
  227. DOUBLE PRECISION RWORK( * ), S( * )
  228. COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
  229. $ WORK( * )
  230. * ..
  231. *
  232. * =====================================================================
  233. *
  234. * .. Parameters ..
  235. COMPLEX*16 CZERO, CONE
  236. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  237. $ CONE = ( 1.0D0, 0.0D0 ) )
  238. DOUBLE PRECISION ZERO, ONE
  239. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  240. * ..
  241. * .. Local Scalars ..
  242. LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
  243. $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
  244. INTEGER BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL,
  245. $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
  246. $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
  247. $ NRVT, WRKBL
  248. INTEGER LWORK_ZGEQRF, LWORK_ZUNGQR_N, LWORK_ZUNGQR_M,
  249. $ LWORK_ZGEBRD, LWORK_ZUNGBR_P, LWORK_ZUNGBR_Q,
  250. $ LWORK_ZGELQF, LWORK_ZUNGLQ_N, LWORK_ZUNGLQ_M
  251. DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
  252. * ..
  253. * .. Local Arrays ..
  254. DOUBLE PRECISION DUM( 1 )
  255. COMPLEX*16 CDUM( 1 )
  256. * ..
  257. * .. External Subroutines ..
  258. EXTERNAL DLASCL, XERBLA, ZBDSQR, ZGEBRD, ZGELQF, ZGEMM,
  259. $ ZGEQRF, ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNGLQ,
  260. $ ZUNGQR, ZUNMBR
  261. * ..
  262. * .. External Functions ..
  263. LOGICAL LSAME
  264. INTEGER ILAENV
  265. DOUBLE PRECISION DLAMCH, ZLANGE
  266. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  267. * ..
  268. * .. Intrinsic Functions ..
  269. INTRINSIC MAX, MIN, SQRT
  270. * ..
  271. * .. Executable Statements ..
  272. *
  273. * Test the input arguments
  274. *
  275. INFO = 0
  276. MINMN = MIN( M, N )
  277. WNTUA = LSAME( JOBU, 'A' )
  278. WNTUS = LSAME( JOBU, 'S' )
  279. WNTUAS = WNTUA .OR. WNTUS
  280. WNTUO = LSAME( JOBU, 'O' )
  281. WNTUN = LSAME( JOBU, 'N' )
  282. WNTVA = LSAME( JOBVT, 'A' )
  283. WNTVS = LSAME( JOBVT, 'S' )
  284. WNTVAS = WNTVA .OR. WNTVS
  285. WNTVO = LSAME( JOBVT, 'O' )
  286. WNTVN = LSAME( JOBVT, 'N' )
  287. LQUERY = ( LWORK.EQ.-1 )
  288. *
  289. IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
  290. INFO = -1
  291. ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
  292. $ ( WNTVO .AND. WNTUO ) ) THEN
  293. INFO = -2
  294. ELSE IF( M.LT.0 ) THEN
  295. INFO = -3
  296. ELSE IF( N.LT.0 ) THEN
  297. INFO = -4
  298. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  299. INFO = -6
  300. ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
  301. INFO = -9
  302. ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
  303. $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
  304. INFO = -11
  305. END IF
  306. *
  307. * Compute workspace
  308. * (Note: Comments in the code beginning "Workspace:" describe the
  309. * minimal amount of workspace needed at that point in the code,
  310. * as well as the preferred amount for good performance.
  311. * CWorkspace refers to complex workspace, and RWorkspace to
  312. * real workspace. NB refers to the optimal block size for the
  313. * immediately following subroutine, as returned by ILAENV.)
  314. *
  315. IF( INFO.EQ.0 ) THEN
  316. MINWRK = 1
  317. MAXWRK = 1
  318. IF( M.GE.N .AND. MINMN.GT.0 ) THEN
  319. *
  320. * Space needed for ZBDSQR is BDSPAC = 5*N
  321. *
  322. MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, 0 )
  323. * Compute space needed for ZGEQRF
  324. CALL ZGEQRF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
  325. LWORK_ZGEQRF=CDUM(1)
  326. * Compute space needed for ZUNGQR
  327. CALL ZUNGQR( M, N, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
  328. LWORK_ZUNGQR_N=CDUM(1)
  329. CALL ZUNGQR( M, M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
  330. LWORK_ZUNGQR_M=CDUM(1)
  331. * Compute space needed for ZGEBRD
  332. CALL ZGEBRD( N, N, A, LDA, S, DUM(1), CDUM(1),
  333. $ CDUM(1), CDUM(1), -1, IERR )
  334. LWORK_ZGEBRD=CDUM(1)
  335. * Compute space needed for ZUNGBR
  336. CALL ZUNGBR( 'P', N, N, N, A, LDA, CDUM(1),
  337. $ CDUM(1), -1, IERR )
  338. LWORK_ZUNGBR_P=CDUM(1)
  339. CALL ZUNGBR( 'Q', N, N, N, A, LDA, CDUM(1),
  340. $ CDUM(1), -1, IERR )
  341. LWORK_ZUNGBR_Q=CDUM(1)
  342. *
  343. IF( M.GE.MNTHR ) THEN
  344. IF( WNTUN ) THEN
  345. *
  346. * Path 1 (M much larger than N, JOBU='N')
  347. *
  348. MAXWRK = N + LWORK_ZGEQRF
  349. MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZGEBRD )
  350. IF( WNTVO .OR. WNTVAS )
  351. $ MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_P )
  352. MINWRK = 3*N
  353. ELSE IF( WNTUO .AND. WNTVN ) THEN
  354. *
  355. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  356. *
  357. WRKBL = N + LWORK_ZGEQRF
  358. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
  359. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  360. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  361. MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
  362. MINWRK = 2*N + M
  363. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  364. *
  365. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
  366. * 'A')
  367. *
  368. WRKBL = N + LWORK_ZGEQRF
  369. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
  370. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  371. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  372. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
  373. MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
  374. MINWRK = 2*N + M
  375. ELSE IF( WNTUS .AND. WNTVN ) THEN
  376. *
  377. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  378. *
  379. WRKBL = N + LWORK_ZGEQRF
  380. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
  381. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  382. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  383. MAXWRK = N*N + WRKBL
  384. MINWRK = 2*N + M
  385. ELSE IF( WNTUS .AND. WNTVO ) THEN
  386. *
  387. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  388. *
  389. WRKBL = N + LWORK_ZGEQRF
  390. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
  391. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  392. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  393. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
  394. MAXWRK = 2*N*N + WRKBL
  395. MINWRK = 2*N + M
  396. ELSE IF( WNTUS .AND. WNTVAS ) THEN
  397. *
  398. * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
  399. * 'A')
  400. *
  401. WRKBL = N + LWORK_ZGEQRF
  402. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_N )
  403. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  404. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  405. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
  406. MAXWRK = N*N + WRKBL
  407. MINWRK = 2*N + M
  408. ELSE IF( WNTUA .AND. WNTVN ) THEN
  409. *
  410. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  411. *
  412. WRKBL = N + LWORK_ZGEQRF
  413. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
  414. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  415. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  416. MAXWRK = N*N + WRKBL
  417. MINWRK = 2*N + M
  418. ELSE IF( WNTUA .AND. WNTVO ) THEN
  419. *
  420. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  421. *
  422. WRKBL = N + LWORK_ZGEQRF
  423. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
  424. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  425. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  426. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
  427. MAXWRK = 2*N*N + WRKBL
  428. MINWRK = 2*N + M
  429. ELSE IF( WNTUA .AND. WNTVAS ) THEN
  430. *
  431. * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
  432. * 'A')
  433. *
  434. WRKBL = N + LWORK_ZGEQRF
  435. WRKBL = MAX( WRKBL, N+LWORK_ZUNGQR_M )
  436. WRKBL = MAX( WRKBL, 2*N+LWORK_ZGEBRD )
  437. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_Q )
  438. WRKBL = MAX( WRKBL, 2*N+LWORK_ZUNGBR_P )
  439. MAXWRK = N*N + WRKBL
  440. MINWRK = 2*N + M
  441. END IF
  442. ELSE
  443. *
  444. * Path 10 (M at least N, but not much larger)
  445. *
  446. CALL ZGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
  447. $ CDUM(1), CDUM(1), -1, IERR )
  448. LWORK_ZGEBRD=CDUM(1)
  449. MAXWRK = 2*N + LWORK_ZGEBRD
  450. IF( WNTUS .OR. WNTUO ) THEN
  451. CALL ZUNGBR( 'Q', M, N, N, A, LDA, CDUM(1),
  452. $ CDUM(1), -1, IERR )
  453. LWORK_ZUNGBR_Q=CDUM(1)
  454. MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_Q )
  455. END IF
  456. IF( WNTUA ) THEN
  457. CALL ZUNGBR( 'Q', M, M, N, A, LDA, CDUM(1),
  458. $ CDUM(1), -1, IERR )
  459. LWORK_ZUNGBR_Q=CDUM(1)
  460. MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_Q )
  461. END IF
  462. IF( .NOT.WNTVN ) THEN
  463. MAXWRK = MAX( MAXWRK, 2*N+LWORK_ZUNGBR_P )
  464. MINWRK = 2*N + M
  465. END IF
  466. END IF
  467. ELSE IF( MINMN.GT.0 ) THEN
  468. *
  469. * Space needed for ZBDSQR is BDSPAC = 5*M
  470. *
  471. MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, 0 )
  472. * Compute space needed for ZGELQF
  473. CALL ZGELQF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
  474. LWORK_ZGELQF=CDUM(1)
  475. * Compute space needed for ZUNGLQ
  476. CALL ZUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1), -1,
  477. $ IERR )
  478. LWORK_ZUNGLQ_N=CDUM(1)
  479. CALL ZUNGLQ( M, N, M, A, LDA, CDUM(1), CDUM(1), -1, IERR )
  480. LWORK_ZUNGLQ_M=CDUM(1)
  481. * Compute space needed for ZGEBRD
  482. CALL ZGEBRD( M, M, A, LDA, S, DUM(1), CDUM(1),
  483. $ CDUM(1), CDUM(1), -1, IERR )
  484. LWORK_ZGEBRD=CDUM(1)
  485. * Compute space needed for ZUNGBR P
  486. CALL ZUNGBR( 'P', M, M, M, A, N, CDUM(1),
  487. $ CDUM(1), -1, IERR )
  488. LWORK_ZUNGBR_P=CDUM(1)
  489. * Compute space needed for ZUNGBR Q
  490. CALL ZUNGBR( 'Q', M, M, M, A, N, CDUM(1),
  491. $ CDUM(1), -1, IERR )
  492. LWORK_ZUNGBR_Q=CDUM(1)
  493. IF( N.GE.MNTHR ) THEN
  494. IF( WNTVN ) THEN
  495. *
  496. * Path 1t(N much larger than M, JOBVT='N')
  497. *
  498. MAXWRK = M + LWORK_ZGELQF
  499. MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZGEBRD )
  500. IF( WNTUO .OR. WNTUAS )
  501. $ MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_Q )
  502. MINWRK = 3*M
  503. ELSE IF( WNTVO .AND. WNTUN ) THEN
  504. *
  505. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  506. *
  507. WRKBL = M + LWORK_ZGELQF
  508. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
  509. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  510. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  511. MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
  512. MINWRK = 2*M + N
  513. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  514. *
  515. * Path 3t(N much larger than M, JOBU='S' or 'A',
  516. * JOBVT='O')
  517. *
  518. WRKBL = M + LWORK_ZGELQF
  519. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
  520. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  521. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  522. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
  523. MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
  524. MINWRK = 2*M + N
  525. ELSE IF( WNTVS .AND. WNTUN ) THEN
  526. *
  527. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  528. *
  529. WRKBL = M + LWORK_ZGELQF
  530. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
  531. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  532. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  533. MAXWRK = M*M + WRKBL
  534. MINWRK = 2*M + N
  535. ELSE IF( WNTVS .AND. WNTUO ) THEN
  536. *
  537. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  538. *
  539. WRKBL = M + LWORK_ZGELQF
  540. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
  541. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  542. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  543. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
  544. MAXWRK = 2*M*M + WRKBL
  545. MINWRK = 2*M + N
  546. ELSE IF( WNTVS .AND. WNTUAS ) THEN
  547. *
  548. * Path 6t(N much larger than M, JOBU='S' or 'A',
  549. * JOBVT='S')
  550. *
  551. WRKBL = M + LWORK_ZGELQF
  552. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_M )
  553. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  554. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  555. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
  556. MAXWRK = M*M + WRKBL
  557. MINWRK = 2*M + N
  558. ELSE IF( WNTVA .AND. WNTUN ) THEN
  559. *
  560. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  561. *
  562. WRKBL = M + LWORK_ZGELQF
  563. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
  564. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  565. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  566. MAXWRK = M*M + WRKBL
  567. MINWRK = 2*M + N
  568. ELSE IF( WNTVA .AND. WNTUO ) THEN
  569. *
  570. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  571. *
  572. WRKBL = M + LWORK_ZGELQF
  573. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
  574. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  575. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  576. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
  577. MAXWRK = 2*M*M + WRKBL
  578. MINWRK = 2*M + N
  579. ELSE IF( WNTVA .AND. WNTUAS ) THEN
  580. *
  581. * Path 9t(N much larger than M, JOBU='S' or 'A',
  582. * JOBVT='A')
  583. *
  584. WRKBL = M + LWORK_ZGELQF
  585. WRKBL = MAX( WRKBL, M+LWORK_ZUNGLQ_N )
  586. WRKBL = MAX( WRKBL, 2*M+LWORK_ZGEBRD )
  587. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_P )
  588. WRKBL = MAX( WRKBL, 2*M+LWORK_ZUNGBR_Q )
  589. MAXWRK = M*M + WRKBL
  590. MINWRK = 2*M + N
  591. END IF
  592. ELSE
  593. *
  594. * Path 10t(N greater than M, but not much larger)
  595. *
  596. CALL ZGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
  597. $ CDUM(1), CDUM(1), -1, IERR )
  598. LWORK_ZGEBRD=CDUM(1)
  599. MAXWRK = 2*M + LWORK_ZGEBRD
  600. IF( WNTVS .OR. WNTVO ) THEN
  601. * Compute space needed for ZUNGBR P
  602. CALL ZUNGBR( 'P', M, N, M, A, N, CDUM(1),
  603. $ CDUM(1), -1, IERR )
  604. LWORK_ZUNGBR_P=CDUM(1)
  605. MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_P )
  606. END IF
  607. IF( WNTVA ) THEN
  608. CALL ZUNGBR( 'P', N, N, M, A, N, CDUM(1),
  609. $ CDUM(1), -1, IERR )
  610. LWORK_ZUNGBR_P=CDUM(1)
  611. MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_P )
  612. END IF
  613. IF( .NOT.WNTUN ) THEN
  614. MAXWRK = MAX( MAXWRK, 2*M+LWORK_ZUNGBR_Q )
  615. MINWRK = 2*M + N
  616. END IF
  617. END IF
  618. END IF
  619. MAXWRK = MAX( MAXWRK, MINWRK )
  620. WORK( 1 ) = MAXWRK
  621. *
  622. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  623. INFO = -13
  624. END IF
  625. END IF
  626. *
  627. IF( INFO.NE.0 ) THEN
  628. CALL XERBLA( 'ZGESVD', -INFO )
  629. RETURN
  630. ELSE IF( LQUERY ) THEN
  631. RETURN
  632. END IF
  633. *
  634. * Quick return if possible
  635. *
  636. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  637. RETURN
  638. END IF
  639. *
  640. * Get machine constants
  641. *
  642. EPS = DLAMCH( 'P' )
  643. SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
  644. BIGNUM = ONE / SMLNUM
  645. *
  646. * Scale A if max element outside range [SMLNUM,BIGNUM]
  647. *
  648. ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  649. ISCL = 0
  650. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  651. ISCL = 1
  652. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
  653. ELSE IF( ANRM.GT.BIGNUM ) THEN
  654. ISCL = 1
  655. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
  656. END IF
  657. *
  658. IF( M.GE.N ) THEN
  659. *
  660. * A has at least as many rows as columns. If A has sufficiently
  661. * more rows than columns, first reduce using the QR
  662. * decomposition (if sufficient workspace available)
  663. *
  664. IF( M.GE.MNTHR ) THEN
  665. *
  666. IF( WNTUN ) THEN
  667. *
  668. * Path 1 (M much larger than N, JOBU='N')
  669. * No left singular vectors to be computed
  670. *
  671. ITAU = 1
  672. IWORK = ITAU + N
  673. *
  674. * Compute A=Q*R
  675. * (CWorkspace: need 2*N, prefer N+N*NB)
  676. * (RWorkspace: need 0)
  677. *
  678. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  679. $ LWORK-IWORK+1, IERR )
  680. *
  681. * Zero out below R
  682. *
  683. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  684. $ LDA )
  685. IE = 1
  686. ITAUQ = 1
  687. ITAUP = ITAUQ + N
  688. IWORK = ITAUP + N
  689. *
  690. * Bidiagonalize R in A
  691. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  692. * (RWorkspace: need N)
  693. *
  694. CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  695. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  696. $ IERR )
  697. NCVT = 0
  698. IF( WNTVO .OR. WNTVAS ) THEN
  699. *
  700. * If right singular vectors desired, generate P'.
  701. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  702. * (RWorkspace: 0)
  703. *
  704. CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  705. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  706. NCVT = N
  707. END IF
  708. IRWORK = IE + N
  709. *
  710. * Perform bidiagonal QR iteration, computing right
  711. * singular vectors of A in A if desired
  712. * (CWorkspace: 0)
  713. * (RWorkspace: need BDSPAC)
  714. *
  715. CALL ZBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA,
  716. $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
  717. *
  718. * If right singular vectors desired in VT, copy them there
  719. *
  720. IF( WNTVAS )
  721. $ CALL ZLACPY( 'F', N, N, A, LDA, VT, LDVT )
  722. *
  723. ELSE IF( WNTUO .AND. WNTVN ) THEN
  724. *
  725. * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
  726. * N left singular vectors to be overwritten on A and
  727. * no right singular vectors to be computed
  728. *
  729. IF( LWORK.GE.N*N+3*N ) THEN
  730. *
  731. * Sufficient workspace for a fast algorithm
  732. *
  733. IR = 1
  734. IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
  735. *
  736. * WORK(IU) is LDA by N, WORK(IR) is LDA by N
  737. *
  738. LDWRKU = LDA
  739. LDWRKR = LDA
  740. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
  741. *
  742. * WORK(IU) is LDA by N, WORK(IR) is N by N
  743. *
  744. LDWRKU = LDA
  745. LDWRKR = N
  746. ELSE
  747. *
  748. * WORK(IU) is LDWRKU by N, WORK(IR) is N by N
  749. *
  750. LDWRKU = ( LWORK-N*N ) / N
  751. LDWRKR = N
  752. END IF
  753. ITAU = IR + LDWRKR*N
  754. IWORK = ITAU + N
  755. *
  756. * Compute A=Q*R
  757. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  758. * (RWorkspace: 0)
  759. *
  760. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  761. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  762. *
  763. * Copy R to WORK(IR) and zero out below it
  764. *
  765. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
  766. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  767. $ WORK( IR+1 ), LDWRKR )
  768. *
  769. * Generate Q in A
  770. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  771. * (RWorkspace: 0)
  772. *
  773. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  774. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  775. IE = 1
  776. ITAUQ = ITAU
  777. ITAUP = ITAUQ + N
  778. IWORK = ITAUP + N
  779. *
  780. * Bidiagonalize R in WORK(IR)
  781. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  782. * (RWorkspace: need N)
  783. *
  784. CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
  785. $ WORK( ITAUQ ), WORK( ITAUP ),
  786. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  787. *
  788. * Generate left vectors bidiagonalizing R
  789. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  790. * (RWorkspace: need 0)
  791. *
  792. CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  793. $ WORK( ITAUQ ), WORK( IWORK ),
  794. $ LWORK-IWORK+1, IERR )
  795. IRWORK = IE + N
  796. *
  797. * Perform bidiagonal QR iteration, computing left
  798. * singular vectors of R in WORK(IR)
  799. * (CWorkspace: need N*N)
  800. * (RWorkspace: need BDSPAC)
  801. *
  802. CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1,
  803. $ WORK( IR ), LDWRKR, CDUM, 1,
  804. $ RWORK( IRWORK ), INFO )
  805. IU = ITAUQ
  806. *
  807. * Multiply Q in A by left singular vectors of R in
  808. * WORK(IR), storing result in WORK(IU) and copying to A
  809. * (CWorkspace: need N*N+N, prefer N*N+M*N)
  810. * (RWorkspace: 0)
  811. *
  812. DO 10 I = 1, M, LDWRKU
  813. CHUNK = MIN( M-I+1, LDWRKU )
  814. CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
  815. $ LDA, WORK( IR ), LDWRKR, CZERO,
  816. $ WORK( IU ), LDWRKU )
  817. CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  818. $ A( I, 1 ), LDA )
  819. 10 CONTINUE
  820. *
  821. ELSE
  822. *
  823. * Insufficient workspace for a fast algorithm
  824. *
  825. IE = 1
  826. ITAUQ = 1
  827. ITAUP = ITAUQ + N
  828. IWORK = ITAUP + N
  829. *
  830. * Bidiagonalize A
  831. * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
  832. * (RWorkspace: N)
  833. *
  834. CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
  835. $ WORK( ITAUQ ), WORK( ITAUP ),
  836. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  837. *
  838. * Generate left vectors bidiagonalizing A
  839. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  840. * (RWorkspace: 0)
  841. *
  842. CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  843. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  844. IRWORK = IE + N
  845. *
  846. * Perform bidiagonal QR iteration, computing left
  847. * singular vectors of A in A
  848. * (CWorkspace: need 0)
  849. * (RWorkspace: need BDSPAC)
  850. *
  851. CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1,
  852. $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
  853. *
  854. END IF
  855. *
  856. ELSE IF( WNTUO .AND. WNTVAS ) THEN
  857. *
  858. * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
  859. * N left singular vectors to be overwritten on A and
  860. * N right singular vectors to be computed in VT
  861. *
  862. IF( LWORK.GE.N*N+3*N ) THEN
  863. *
  864. * Sufficient workspace for a fast algorithm
  865. *
  866. IR = 1
  867. IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
  868. *
  869. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  870. *
  871. LDWRKU = LDA
  872. LDWRKR = LDA
  873. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
  874. *
  875. * WORK(IU) is LDA by N and WORK(IR) is N by N
  876. *
  877. LDWRKU = LDA
  878. LDWRKR = N
  879. ELSE
  880. *
  881. * WORK(IU) is LDWRKU by N and WORK(IR) is N by N
  882. *
  883. LDWRKU = ( LWORK-N*N ) / N
  884. LDWRKR = N
  885. END IF
  886. ITAU = IR + LDWRKR*N
  887. IWORK = ITAU + N
  888. *
  889. * Compute A=Q*R
  890. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  891. * (RWorkspace: 0)
  892. *
  893. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  894. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  895. *
  896. * Copy R to VT, zeroing out below it
  897. *
  898. CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
  899. IF( N.GT.1 )
  900. $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  901. $ VT( 2, 1 ), LDVT )
  902. *
  903. * Generate Q in A
  904. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  905. * (RWorkspace: 0)
  906. *
  907. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  908. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  909. IE = 1
  910. ITAUQ = ITAU
  911. ITAUP = ITAUQ + N
  912. IWORK = ITAUP + N
  913. *
  914. * Bidiagonalize R in VT, copying result to WORK(IR)
  915. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  916. * (RWorkspace: need N)
  917. *
  918. CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
  919. $ WORK( ITAUQ ), WORK( ITAUP ),
  920. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  921. CALL ZLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
  922. *
  923. * Generate left vectors bidiagonalizing R in WORK(IR)
  924. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  925. * (RWorkspace: 0)
  926. *
  927. CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  928. $ WORK( ITAUQ ), WORK( IWORK ),
  929. $ LWORK-IWORK+1, IERR )
  930. *
  931. * Generate right vectors bidiagonalizing R in VT
  932. * (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB)
  933. * (RWorkspace: 0)
  934. *
  935. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  936. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  937. IRWORK = IE + N
  938. *
  939. * Perform bidiagonal QR iteration, computing left
  940. * singular vectors of R in WORK(IR) and computing right
  941. * singular vectors of R in VT
  942. * (CWorkspace: need N*N)
  943. * (RWorkspace: need BDSPAC)
  944. *
  945. CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
  946. $ LDVT, WORK( IR ), LDWRKR, CDUM, 1,
  947. $ RWORK( IRWORK ), INFO )
  948. IU = ITAUQ
  949. *
  950. * Multiply Q in A by left singular vectors of R in
  951. * WORK(IR), storing result in WORK(IU) and copying to A
  952. * (CWorkspace: need N*N+N, prefer N*N+M*N)
  953. * (RWorkspace: 0)
  954. *
  955. DO 20 I = 1, M, LDWRKU
  956. CHUNK = MIN( M-I+1, LDWRKU )
  957. CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
  958. $ LDA, WORK( IR ), LDWRKR, CZERO,
  959. $ WORK( IU ), LDWRKU )
  960. CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
  961. $ A( I, 1 ), LDA )
  962. 20 CONTINUE
  963. *
  964. ELSE
  965. *
  966. * Insufficient workspace for a fast algorithm
  967. *
  968. ITAU = 1
  969. IWORK = ITAU + N
  970. *
  971. * Compute A=Q*R
  972. * (CWorkspace: need 2*N, prefer N+N*NB)
  973. * (RWorkspace: 0)
  974. *
  975. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  976. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  977. *
  978. * Copy R to VT, zeroing out below it
  979. *
  980. CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
  981. IF( N.GT.1 )
  982. $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  983. $ VT( 2, 1 ), LDVT )
  984. *
  985. * Generate Q in A
  986. * (CWorkspace: need 2*N, prefer N+N*NB)
  987. * (RWorkspace: 0)
  988. *
  989. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  990. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  991. IE = 1
  992. ITAUQ = ITAU
  993. ITAUP = ITAUQ + N
  994. IWORK = ITAUP + N
  995. *
  996. * Bidiagonalize R in VT
  997. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  998. * (RWorkspace: N)
  999. *
  1000. CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
  1001. $ WORK( ITAUQ ), WORK( ITAUP ),
  1002. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1003. *
  1004. * Multiply Q in A by left vectors bidiagonalizing R
  1005. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1006. * (RWorkspace: 0)
  1007. *
  1008. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1009. $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
  1010. $ LWORK-IWORK+1, IERR )
  1011. *
  1012. * Generate right vectors bidiagonalizing R in VT
  1013. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  1014. * (RWorkspace: 0)
  1015. *
  1016. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1017. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1018. IRWORK = IE + N
  1019. *
  1020. * Perform bidiagonal QR iteration, computing left
  1021. * singular vectors of A in A and computing right
  1022. * singular vectors of A in VT
  1023. * (CWorkspace: 0)
  1024. * (RWorkspace: need BDSPAC)
  1025. *
  1026. CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
  1027. $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
  1028. $ INFO )
  1029. *
  1030. END IF
  1031. *
  1032. ELSE IF( WNTUS ) THEN
  1033. *
  1034. IF( WNTVN ) THEN
  1035. *
  1036. * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
  1037. * N left singular vectors to be computed in U and
  1038. * no right singular vectors to be computed
  1039. *
  1040. IF( LWORK.GE.N*N+3*N ) THEN
  1041. *
  1042. * Sufficient workspace for a fast algorithm
  1043. *
  1044. IR = 1
  1045. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1046. *
  1047. * WORK(IR) is LDA by N
  1048. *
  1049. LDWRKR = LDA
  1050. ELSE
  1051. *
  1052. * WORK(IR) is N by N
  1053. *
  1054. LDWRKR = N
  1055. END IF
  1056. ITAU = IR + LDWRKR*N
  1057. IWORK = ITAU + N
  1058. *
  1059. * Compute A=Q*R
  1060. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1061. * (RWorkspace: 0)
  1062. *
  1063. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1064. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1065. *
  1066. * Copy R to WORK(IR), zeroing out below it
  1067. *
  1068. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1069. $ LDWRKR )
  1070. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1071. $ WORK( IR+1 ), LDWRKR )
  1072. *
  1073. * Generate Q in A
  1074. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1075. * (RWorkspace: 0)
  1076. *
  1077. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  1078. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1079. IE = 1
  1080. ITAUQ = ITAU
  1081. ITAUP = ITAUQ + N
  1082. IWORK = ITAUP + N
  1083. *
  1084. * Bidiagonalize R in WORK(IR)
  1085. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  1086. * (RWorkspace: need N)
  1087. *
  1088. CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1089. $ RWORK( IE ), WORK( ITAUQ ),
  1090. $ WORK( ITAUP ), WORK( IWORK ),
  1091. $ LWORK-IWORK+1, IERR )
  1092. *
  1093. * Generate left vectors bidiagonalizing R in WORK(IR)
  1094. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  1095. * (RWorkspace: 0)
  1096. *
  1097. CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1098. $ WORK( ITAUQ ), WORK( IWORK ),
  1099. $ LWORK-IWORK+1, IERR )
  1100. IRWORK = IE + N
  1101. *
  1102. * Perform bidiagonal QR iteration, computing left
  1103. * singular vectors of R in WORK(IR)
  1104. * (CWorkspace: need N*N)
  1105. * (RWorkspace: need BDSPAC)
  1106. *
  1107. CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
  1108. $ 1, WORK( IR ), LDWRKR, CDUM, 1,
  1109. $ RWORK( IRWORK ), INFO )
  1110. *
  1111. * Multiply Q in A by left singular vectors of R in
  1112. * WORK(IR), storing result in U
  1113. * (CWorkspace: need N*N)
  1114. * (RWorkspace: 0)
  1115. *
  1116. CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
  1117. $ WORK( IR ), LDWRKR, CZERO, U, LDU )
  1118. *
  1119. ELSE
  1120. *
  1121. * Insufficient workspace for a fast algorithm
  1122. *
  1123. ITAU = 1
  1124. IWORK = ITAU + N
  1125. *
  1126. * Compute A=Q*R, copying result to U
  1127. * (CWorkspace: need 2*N, prefer N+N*NB)
  1128. * (RWorkspace: 0)
  1129. *
  1130. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1131. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1132. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1133. *
  1134. * Generate Q in U
  1135. * (CWorkspace: need 2*N, prefer N+N*NB)
  1136. * (RWorkspace: 0)
  1137. *
  1138. CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
  1139. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1140. IE = 1
  1141. ITAUQ = ITAU
  1142. ITAUP = ITAUQ + N
  1143. IWORK = ITAUP + N
  1144. *
  1145. * Zero out below R in A
  1146. *
  1147. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1148. $ A( 2, 1 ), LDA )
  1149. *
  1150. * Bidiagonalize R in A
  1151. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  1152. * (RWorkspace: need N)
  1153. *
  1154. CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
  1155. $ WORK( ITAUQ ), WORK( ITAUP ),
  1156. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1157. *
  1158. * Multiply Q in U by left vectors bidiagonalizing R
  1159. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1160. * (RWorkspace: 0)
  1161. *
  1162. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1163. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1164. $ LWORK-IWORK+1, IERR )
  1165. IRWORK = IE + N
  1166. *
  1167. * Perform bidiagonal QR iteration, computing left
  1168. * singular vectors of A in U
  1169. * (CWorkspace: 0)
  1170. * (RWorkspace: need BDSPAC)
  1171. *
  1172. CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
  1173. $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
  1174. $ INFO )
  1175. *
  1176. END IF
  1177. *
  1178. ELSE IF( WNTVO ) THEN
  1179. *
  1180. * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
  1181. * N left singular vectors to be computed in U and
  1182. * N right singular vectors to be overwritten on A
  1183. *
  1184. IF( LWORK.GE.2*N*N+3*N ) THEN
  1185. *
  1186. * Sufficient workspace for a fast algorithm
  1187. *
  1188. IU = 1
  1189. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1190. *
  1191. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1192. *
  1193. LDWRKU = LDA
  1194. IR = IU + LDWRKU*N
  1195. LDWRKR = LDA
  1196. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1197. *
  1198. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1199. *
  1200. LDWRKU = LDA
  1201. IR = IU + LDWRKU*N
  1202. LDWRKR = N
  1203. ELSE
  1204. *
  1205. * WORK(IU) is N by N and WORK(IR) is N by N
  1206. *
  1207. LDWRKU = N
  1208. IR = IU + LDWRKU*N
  1209. LDWRKR = N
  1210. END IF
  1211. ITAU = IR + LDWRKR*N
  1212. IWORK = ITAU + N
  1213. *
  1214. * Compute A=Q*R
  1215. * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1216. * (RWorkspace: 0)
  1217. *
  1218. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1219. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1220. *
  1221. * Copy R to WORK(IU), zeroing out below it
  1222. *
  1223. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1224. $ LDWRKU )
  1225. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1226. $ WORK( IU+1 ), LDWRKU )
  1227. *
  1228. * Generate Q in A
  1229. * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1230. * (RWorkspace: 0)
  1231. *
  1232. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  1233. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1234. IE = 1
  1235. ITAUQ = ITAU
  1236. ITAUP = ITAUQ + N
  1237. IWORK = ITAUP + N
  1238. *
  1239. * Bidiagonalize R in WORK(IU), copying result to
  1240. * WORK(IR)
  1241. * (CWorkspace: need 2*N*N+3*N,
  1242. * prefer 2*N*N+2*N+2*N*NB)
  1243. * (RWorkspace: need N)
  1244. *
  1245. CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1246. $ RWORK( IE ), WORK( ITAUQ ),
  1247. $ WORK( ITAUP ), WORK( IWORK ),
  1248. $ LWORK-IWORK+1, IERR )
  1249. CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1250. $ WORK( IR ), LDWRKR )
  1251. *
  1252. * Generate left bidiagonalizing vectors in WORK(IU)
  1253. * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
  1254. * (RWorkspace: 0)
  1255. *
  1256. CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1257. $ WORK( ITAUQ ), WORK( IWORK ),
  1258. $ LWORK-IWORK+1, IERR )
  1259. *
  1260. * Generate right bidiagonalizing vectors in WORK(IR)
  1261. * (CWorkspace: need 2*N*N+3*N-1,
  1262. * prefer 2*N*N+2*N+(N-1)*NB)
  1263. * (RWorkspace: 0)
  1264. *
  1265. CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1266. $ WORK( ITAUP ), WORK( IWORK ),
  1267. $ LWORK-IWORK+1, IERR )
  1268. IRWORK = IE + N
  1269. *
  1270. * Perform bidiagonal QR iteration, computing left
  1271. * singular vectors of R in WORK(IU) and computing
  1272. * right singular vectors of R in WORK(IR)
  1273. * (CWorkspace: need 2*N*N)
  1274. * (RWorkspace: need BDSPAC)
  1275. *
  1276. CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
  1277. $ WORK( IR ), LDWRKR, WORK( IU ),
  1278. $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
  1279. $ INFO )
  1280. *
  1281. * Multiply Q in A by left singular vectors of R in
  1282. * WORK(IU), storing result in U
  1283. * (CWorkspace: need N*N)
  1284. * (RWorkspace: 0)
  1285. *
  1286. CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
  1287. $ WORK( IU ), LDWRKU, CZERO, U, LDU )
  1288. *
  1289. * Copy right singular vectors of R to A
  1290. * (CWorkspace: need N*N)
  1291. * (RWorkspace: 0)
  1292. *
  1293. CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1294. $ LDA )
  1295. *
  1296. ELSE
  1297. *
  1298. * Insufficient workspace for a fast algorithm
  1299. *
  1300. ITAU = 1
  1301. IWORK = ITAU + N
  1302. *
  1303. * Compute A=Q*R, copying result to U
  1304. * (CWorkspace: need 2*N, prefer N+N*NB)
  1305. * (RWorkspace: 0)
  1306. *
  1307. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1308. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1309. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1310. *
  1311. * Generate Q in U
  1312. * (CWorkspace: need 2*N, prefer N+N*NB)
  1313. * (RWorkspace: 0)
  1314. *
  1315. CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
  1316. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1317. IE = 1
  1318. ITAUQ = ITAU
  1319. ITAUP = ITAUQ + N
  1320. IWORK = ITAUP + N
  1321. *
  1322. * Zero out below R in A
  1323. *
  1324. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1325. $ A( 2, 1 ), LDA )
  1326. *
  1327. * Bidiagonalize R in A
  1328. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  1329. * (RWorkspace: need N)
  1330. *
  1331. CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
  1332. $ WORK( ITAUQ ), WORK( ITAUP ),
  1333. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1334. *
  1335. * Multiply Q in U by left vectors bidiagonalizing R
  1336. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1337. * (RWorkspace: 0)
  1338. *
  1339. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1340. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1341. $ LWORK-IWORK+1, IERR )
  1342. *
  1343. * Generate right vectors bidiagonalizing R in A
  1344. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  1345. * (RWorkspace: 0)
  1346. *
  1347. CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1348. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1349. IRWORK = IE + N
  1350. *
  1351. * Perform bidiagonal QR iteration, computing left
  1352. * singular vectors of A in U and computing right
  1353. * singular vectors of A in A
  1354. * (CWorkspace: 0)
  1355. * (RWorkspace: need BDSPAC)
  1356. *
  1357. CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
  1358. $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
  1359. $ INFO )
  1360. *
  1361. END IF
  1362. *
  1363. ELSE IF( WNTVAS ) THEN
  1364. *
  1365. * Path 6 (M much larger than N, JOBU='S', JOBVT='S'
  1366. * or 'A')
  1367. * N left singular vectors to be computed in U and
  1368. * N right singular vectors to be computed in VT
  1369. *
  1370. IF( LWORK.GE.N*N+3*N ) THEN
  1371. *
  1372. * Sufficient workspace for a fast algorithm
  1373. *
  1374. IU = 1
  1375. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1376. *
  1377. * WORK(IU) is LDA by N
  1378. *
  1379. LDWRKU = LDA
  1380. ELSE
  1381. *
  1382. * WORK(IU) is N by N
  1383. *
  1384. LDWRKU = N
  1385. END IF
  1386. ITAU = IU + LDWRKU*N
  1387. IWORK = ITAU + N
  1388. *
  1389. * Compute A=Q*R
  1390. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1391. * (RWorkspace: 0)
  1392. *
  1393. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1394. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1395. *
  1396. * Copy R to WORK(IU), zeroing out below it
  1397. *
  1398. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1399. $ LDWRKU )
  1400. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1401. $ WORK( IU+1 ), LDWRKU )
  1402. *
  1403. * Generate Q in A
  1404. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1405. * (RWorkspace: 0)
  1406. *
  1407. CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
  1408. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1409. IE = 1
  1410. ITAUQ = ITAU
  1411. ITAUP = ITAUQ + N
  1412. IWORK = ITAUP + N
  1413. *
  1414. * Bidiagonalize R in WORK(IU), copying result to VT
  1415. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  1416. * (RWorkspace: need N)
  1417. *
  1418. CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1419. $ RWORK( IE ), WORK( ITAUQ ),
  1420. $ WORK( ITAUP ), WORK( IWORK ),
  1421. $ LWORK-IWORK+1, IERR )
  1422. CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1423. $ LDVT )
  1424. *
  1425. * Generate left bidiagonalizing vectors in WORK(IU)
  1426. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  1427. * (RWorkspace: 0)
  1428. *
  1429. CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1430. $ WORK( ITAUQ ), WORK( IWORK ),
  1431. $ LWORK-IWORK+1, IERR )
  1432. *
  1433. * Generate right bidiagonalizing vectors in VT
  1434. * (CWorkspace: need N*N+3*N-1,
  1435. * prefer N*N+2*N+(N-1)*NB)
  1436. * (RWorkspace: 0)
  1437. *
  1438. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1439. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1440. IRWORK = IE + N
  1441. *
  1442. * Perform bidiagonal QR iteration, computing left
  1443. * singular vectors of R in WORK(IU) and computing
  1444. * right singular vectors of R in VT
  1445. * (CWorkspace: need N*N)
  1446. * (RWorkspace: need BDSPAC)
  1447. *
  1448. CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
  1449. $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
  1450. $ RWORK( IRWORK ), INFO )
  1451. *
  1452. * Multiply Q in A by left singular vectors of R in
  1453. * WORK(IU), storing result in U
  1454. * (CWorkspace: need N*N)
  1455. * (RWorkspace: 0)
  1456. *
  1457. CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
  1458. $ WORK( IU ), LDWRKU, CZERO, U, LDU )
  1459. *
  1460. ELSE
  1461. *
  1462. * Insufficient workspace for a fast algorithm
  1463. *
  1464. ITAU = 1
  1465. IWORK = ITAU + N
  1466. *
  1467. * Compute A=Q*R, copying result to U
  1468. * (CWorkspace: need 2*N, prefer N+N*NB)
  1469. * (RWorkspace: 0)
  1470. *
  1471. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1472. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1473. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1474. *
  1475. * Generate Q in U
  1476. * (CWorkspace: need 2*N, prefer N+N*NB)
  1477. * (RWorkspace: 0)
  1478. *
  1479. CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
  1480. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1481. *
  1482. * Copy R to VT, zeroing out below it
  1483. *
  1484. CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
  1485. IF( N.GT.1 )
  1486. $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1487. $ VT( 2, 1 ), LDVT )
  1488. IE = 1
  1489. ITAUQ = ITAU
  1490. ITAUP = ITAUQ + N
  1491. IWORK = ITAUP + N
  1492. *
  1493. * Bidiagonalize R in VT
  1494. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  1495. * (RWorkspace: need N)
  1496. *
  1497. CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
  1498. $ WORK( ITAUQ ), WORK( ITAUP ),
  1499. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1500. *
  1501. * Multiply Q in U by left bidiagonalizing vectors
  1502. * in VT
  1503. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1504. * (RWorkspace: 0)
  1505. *
  1506. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  1507. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1508. $ LWORK-IWORK+1, IERR )
  1509. *
  1510. * Generate right bidiagonalizing vectors in VT
  1511. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  1512. * (RWorkspace: 0)
  1513. *
  1514. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1515. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1516. IRWORK = IE + N
  1517. *
  1518. * Perform bidiagonal QR iteration, computing left
  1519. * singular vectors of A in U and computing right
  1520. * singular vectors of A in VT
  1521. * (CWorkspace: 0)
  1522. * (RWorkspace: need BDSPAC)
  1523. *
  1524. CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
  1525. $ LDVT, U, LDU, CDUM, 1,
  1526. $ RWORK( IRWORK ), INFO )
  1527. *
  1528. END IF
  1529. *
  1530. END IF
  1531. *
  1532. ELSE IF( WNTUA ) THEN
  1533. *
  1534. IF( WNTVN ) THEN
  1535. *
  1536. * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
  1537. * M left singular vectors to be computed in U and
  1538. * no right singular vectors to be computed
  1539. *
  1540. IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
  1541. *
  1542. * Sufficient workspace for a fast algorithm
  1543. *
  1544. IR = 1
  1545. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1546. *
  1547. * WORK(IR) is LDA by N
  1548. *
  1549. LDWRKR = LDA
  1550. ELSE
  1551. *
  1552. * WORK(IR) is N by N
  1553. *
  1554. LDWRKR = N
  1555. END IF
  1556. ITAU = IR + LDWRKR*N
  1557. IWORK = ITAU + N
  1558. *
  1559. * Compute A=Q*R, copying result to U
  1560. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1561. * (RWorkspace: 0)
  1562. *
  1563. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1564. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1565. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1566. *
  1567. * Copy R to WORK(IR), zeroing out below it
  1568. *
  1569. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
  1570. $ LDWRKR )
  1571. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1572. $ WORK( IR+1 ), LDWRKR )
  1573. *
  1574. * Generate Q in U
  1575. * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
  1576. * (RWorkspace: 0)
  1577. *
  1578. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1579. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1580. IE = 1
  1581. ITAUQ = ITAU
  1582. ITAUP = ITAUQ + N
  1583. IWORK = ITAUP + N
  1584. *
  1585. * Bidiagonalize R in WORK(IR)
  1586. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  1587. * (RWorkspace: need N)
  1588. *
  1589. CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
  1590. $ RWORK( IE ), WORK( ITAUQ ),
  1591. $ WORK( ITAUP ), WORK( IWORK ),
  1592. $ LWORK-IWORK+1, IERR )
  1593. *
  1594. * Generate left bidiagonalizing vectors in WORK(IR)
  1595. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  1596. * (RWorkspace: 0)
  1597. *
  1598. CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
  1599. $ WORK( ITAUQ ), WORK( IWORK ),
  1600. $ LWORK-IWORK+1, IERR )
  1601. IRWORK = IE + N
  1602. *
  1603. * Perform bidiagonal QR iteration, computing left
  1604. * singular vectors of R in WORK(IR)
  1605. * (CWorkspace: need N*N)
  1606. * (RWorkspace: need BDSPAC)
  1607. *
  1608. CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
  1609. $ 1, WORK( IR ), LDWRKR, CDUM, 1,
  1610. $ RWORK( IRWORK ), INFO )
  1611. *
  1612. * Multiply Q in U by left singular vectors of R in
  1613. * WORK(IR), storing result in A
  1614. * (CWorkspace: need N*N)
  1615. * (RWorkspace: 0)
  1616. *
  1617. CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
  1618. $ WORK( IR ), LDWRKR, CZERO, A, LDA )
  1619. *
  1620. * Copy left singular vectors of A from A to U
  1621. *
  1622. CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
  1623. *
  1624. ELSE
  1625. *
  1626. * Insufficient workspace for a fast algorithm
  1627. *
  1628. ITAU = 1
  1629. IWORK = ITAU + N
  1630. *
  1631. * Compute A=Q*R, copying result to U
  1632. * (CWorkspace: need 2*N, prefer N+N*NB)
  1633. * (RWorkspace: 0)
  1634. *
  1635. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1636. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1637. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1638. *
  1639. * Generate Q in U
  1640. * (CWorkspace: need N+M, prefer N+M*NB)
  1641. * (RWorkspace: 0)
  1642. *
  1643. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1644. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1645. IE = 1
  1646. ITAUQ = ITAU
  1647. ITAUP = ITAUQ + N
  1648. IWORK = ITAUP + N
  1649. *
  1650. * Zero out below R in A
  1651. *
  1652. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1653. $ A( 2, 1 ), LDA )
  1654. *
  1655. * Bidiagonalize R in A
  1656. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  1657. * (RWorkspace: need N)
  1658. *
  1659. CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
  1660. $ WORK( ITAUQ ), WORK( ITAUP ),
  1661. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1662. *
  1663. * Multiply Q in U by left bidiagonalizing vectors
  1664. * in A
  1665. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1666. * (RWorkspace: 0)
  1667. *
  1668. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1669. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1670. $ LWORK-IWORK+1, IERR )
  1671. IRWORK = IE + N
  1672. *
  1673. * Perform bidiagonal QR iteration, computing left
  1674. * singular vectors of A in U
  1675. * (CWorkspace: 0)
  1676. * (RWorkspace: need BDSPAC)
  1677. *
  1678. CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
  1679. $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
  1680. $ INFO )
  1681. *
  1682. END IF
  1683. *
  1684. ELSE IF( WNTVO ) THEN
  1685. *
  1686. * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
  1687. * M left singular vectors to be computed in U and
  1688. * N right singular vectors to be overwritten on A
  1689. *
  1690. IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN
  1691. *
  1692. * Sufficient workspace for a fast algorithm
  1693. *
  1694. IU = 1
  1695. IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
  1696. *
  1697. * WORK(IU) is LDA by N and WORK(IR) is LDA by N
  1698. *
  1699. LDWRKU = LDA
  1700. IR = IU + LDWRKU*N
  1701. LDWRKR = LDA
  1702. ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
  1703. *
  1704. * WORK(IU) is LDA by N and WORK(IR) is N by N
  1705. *
  1706. LDWRKU = LDA
  1707. IR = IU + LDWRKU*N
  1708. LDWRKR = N
  1709. ELSE
  1710. *
  1711. * WORK(IU) is N by N and WORK(IR) is N by N
  1712. *
  1713. LDWRKU = N
  1714. IR = IU + LDWRKU*N
  1715. LDWRKR = N
  1716. END IF
  1717. ITAU = IR + LDWRKR*N
  1718. IWORK = ITAU + N
  1719. *
  1720. * Compute A=Q*R, copying result to U
  1721. * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
  1722. * (RWorkspace: 0)
  1723. *
  1724. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1725. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1726. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1727. *
  1728. * Generate Q in U
  1729. * (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
  1730. * (RWorkspace: 0)
  1731. *
  1732. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1733. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1734. *
  1735. * Copy R to WORK(IU), zeroing out below it
  1736. *
  1737. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1738. $ LDWRKU )
  1739. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1740. $ WORK( IU+1 ), LDWRKU )
  1741. IE = 1
  1742. ITAUQ = ITAU
  1743. ITAUP = ITAUQ + N
  1744. IWORK = ITAUP + N
  1745. *
  1746. * Bidiagonalize R in WORK(IU), copying result to
  1747. * WORK(IR)
  1748. * (CWorkspace: need 2*N*N+3*N,
  1749. * prefer 2*N*N+2*N+2*N*NB)
  1750. * (RWorkspace: need N)
  1751. *
  1752. CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1753. $ RWORK( IE ), WORK( ITAUQ ),
  1754. $ WORK( ITAUP ), WORK( IWORK ),
  1755. $ LWORK-IWORK+1, IERR )
  1756. CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
  1757. $ WORK( IR ), LDWRKR )
  1758. *
  1759. * Generate left bidiagonalizing vectors in WORK(IU)
  1760. * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
  1761. * (RWorkspace: 0)
  1762. *
  1763. CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1764. $ WORK( ITAUQ ), WORK( IWORK ),
  1765. $ LWORK-IWORK+1, IERR )
  1766. *
  1767. * Generate right bidiagonalizing vectors in WORK(IR)
  1768. * (CWorkspace: need 2*N*N+3*N-1,
  1769. * prefer 2*N*N+2*N+(N-1)*NB)
  1770. * (RWorkspace: 0)
  1771. *
  1772. CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
  1773. $ WORK( ITAUP ), WORK( IWORK ),
  1774. $ LWORK-IWORK+1, IERR )
  1775. IRWORK = IE + N
  1776. *
  1777. * Perform bidiagonal QR iteration, computing left
  1778. * singular vectors of R in WORK(IU) and computing
  1779. * right singular vectors of R in WORK(IR)
  1780. * (CWorkspace: need 2*N*N)
  1781. * (RWorkspace: need BDSPAC)
  1782. *
  1783. CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
  1784. $ WORK( IR ), LDWRKR, WORK( IU ),
  1785. $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
  1786. $ INFO )
  1787. *
  1788. * Multiply Q in U by left singular vectors of R in
  1789. * WORK(IU), storing result in A
  1790. * (CWorkspace: need N*N)
  1791. * (RWorkspace: 0)
  1792. *
  1793. CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
  1794. $ WORK( IU ), LDWRKU, CZERO, A, LDA )
  1795. *
  1796. * Copy left singular vectors of A from A to U
  1797. *
  1798. CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
  1799. *
  1800. * Copy right singular vectors of R from WORK(IR) to A
  1801. *
  1802. CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
  1803. $ LDA )
  1804. *
  1805. ELSE
  1806. *
  1807. * Insufficient workspace for a fast algorithm
  1808. *
  1809. ITAU = 1
  1810. IWORK = ITAU + N
  1811. *
  1812. * Compute A=Q*R, copying result to U
  1813. * (CWorkspace: need 2*N, prefer N+N*NB)
  1814. * (RWorkspace: 0)
  1815. *
  1816. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1817. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1818. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1819. *
  1820. * Generate Q in U
  1821. * (CWorkspace: need N+M, prefer N+M*NB)
  1822. * (RWorkspace: 0)
  1823. *
  1824. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1825. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1826. IE = 1
  1827. ITAUQ = ITAU
  1828. ITAUP = ITAUQ + N
  1829. IWORK = ITAUP + N
  1830. *
  1831. * Zero out below R in A
  1832. *
  1833. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1834. $ A( 2, 1 ), LDA )
  1835. *
  1836. * Bidiagonalize R in A
  1837. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  1838. * (RWorkspace: need N)
  1839. *
  1840. CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
  1841. $ WORK( ITAUQ ), WORK( ITAUP ),
  1842. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1843. *
  1844. * Multiply Q in U by left bidiagonalizing vectors
  1845. * in A
  1846. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  1847. * (RWorkspace: 0)
  1848. *
  1849. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
  1850. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  1851. $ LWORK-IWORK+1, IERR )
  1852. *
  1853. * Generate right bidiagonalizing vectors in A
  1854. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  1855. * (RWorkspace: 0)
  1856. *
  1857. CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  1858. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1859. IRWORK = IE + N
  1860. *
  1861. * Perform bidiagonal QR iteration, computing left
  1862. * singular vectors of A in U and computing right
  1863. * singular vectors of A in A
  1864. * (CWorkspace: 0)
  1865. * (RWorkspace: need BDSPAC)
  1866. *
  1867. CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
  1868. $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
  1869. $ INFO )
  1870. *
  1871. END IF
  1872. *
  1873. ELSE IF( WNTVAS ) THEN
  1874. *
  1875. * Path 9 (M much larger than N, JOBU='A', JOBVT='S'
  1876. * or 'A')
  1877. * M left singular vectors to be computed in U and
  1878. * N right singular vectors to be computed in VT
  1879. *
  1880. IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
  1881. *
  1882. * Sufficient workspace for a fast algorithm
  1883. *
  1884. IU = 1
  1885. IF( LWORK.GE.WRKBL+LDA*N ) THEN
  1886. *
  1887. * WORK(IU) is LDA by N
  1888. *
  1889. LDWRKU = LDA
  1890. ELSE
  1891. *
  1892. * WORK(IU) is N by N
  1893. *
  1894. LDWRKU = N
  1895. END IF
  1896. ITAU = IU + LDWRKU*N
  1897. IWORK = ITAU + N
  1898. *
  1899. * Compute A=Q*R, copying result to U
  1900. * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
  1901. * (RWorkspace: 0)
  1902. *
  1903. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1904. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1905. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1906. *
  1907. * Generate Q in U
  1908. * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
  1909. * (RWorkspace: 0)
  1910. *
  1911. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1912. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1913. *
  1914. * Copy R to WORK(IU), zeroing out below it
  1915. *
  1916. CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
  1917. $ LDWRKU )
  1918. CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  1919. $ WORK( IU+1 ), LDWRKU )
  1920. IE = 1
  1921. ITAUQ = ITAU
  1922. ITAUP = ITAUQ + N
  1923. IWORK = ITAUP + N
  1924. *
  1925. * Bidiagonalize R in WORK(IU), copying result to VT
  1926. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
  1927. * (RWorkspace: need N)
  1928. *
  1929. CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
  1930. $ RWORK( IE ), WORK( ITAUQ ),
  1931. $ WORK( ITAUP ), WORK( IWORK ),
  1932. $ LWORK-IWORK+1, IERR )
  1933. CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
  1934. $ LDVT )
  1935. *
  1936. * Generate left bidiagonalizing vectors in WORK(IU)
  1937. * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
  1938. * (RWorkspace: 0)
  1939. *
  1940. CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
  1941. $ WORK( ITAUQ ), WORK( IWORK ),
  1942. $ LWORK-IWORK+1, IERR )
  1943. *
  1944. * Generate right bidiagonalizing vectors in VT
  1945. * (CWorkspace: need N*N+3*N-1,
  1946. * prefer N*N+2*N+(N-1)*NB)
  1947. * (RWorkspace: need 0)
  1948. *
  1949. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  1950. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1951. IRWORK = IE + N
  1952. *
  1953. * Perform bidiagonal QR iteration, computing left
  1954. * singular vectors of R in WORK(IU) and computing
  1955. * right singular vectors of R in VT
  1956. * (CWorkspace: need N*N)
  1957. * (RWorkspace: need BDSPAC)
  1958. *
  1959. CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
  1960. $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
  1961. $ RWORK( IRWORK ), INFO )
  1962. *
  1963. * Multiply Q in U by left singular vectors of R in
  1964. * WORK(IU), storing result in A
  1965. * (CWorkspace: need N*N)
  1966. * (RWorkspace: 0)
  1967. *
  1968. CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
  1969. $ WORK( IU ), LDWRKU, CZERO, A, LDA )
  1970. *
  1971. * Copy left singular vectors of A from A to U
  1972. *
  1973. CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
  1974. *
  1975. ELSE
  1976. *
  1977. * Insufficient workspace for a fast algorithm
  1978. *
  1979. ITAU = 1
  1980. IWORK = ITAU + N
  1981. *
  1982. * Compute A=Q*R, copying result to U
  1983. * (CWorkspace: need 2*N, prefer N+N*NB)
  1984. * (RWorkspace: 0)
  1985. *
  1986. CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
  1987. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1988. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  1989. *
  1990. * Generate Q in U
  1991. * (CWorkspace: need N+M, prefer N+M*NB)
  1992. * (RWorkspace: 0)
  1993. *
  1994. CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
  1995. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  1996. *
  1997. * Copy R from A to VT, zeroing out below it
  1998. *
  1999. CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
  2000. IF( N.GT.1 )
  2001. $ CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
  2002. $ VT( 2, 1 ), LDVT )
  2003. IE = 1
  2004. ITAUQ = ITAU
  2005. ITAUP = ITAUQ + N
  2006. IWORK = ITAUP + N
  2007. *
  2008. * Bidiagonalize R in VT
  2009. * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
  2010. * (RWorkspace: need N)
  2011. *
  2012. CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
  2013. $ WORK( ITAUQ ), WORK( ITAUP ),
  2014. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2015. *
  2016. * Multiply Q in U by left bidiagonalizing vectors
  2017. * in VT
  2018. * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
  2019. * (RWorkspace: 0)
  2020. *
  2021. CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
  2022. $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
  2023. $ LWORK-IWORK+1, IERR )
  2024. *
  2025. * Generate right bidiagonalizing vectors in VT
  2026. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  2027. * (RWorkspace: 0)
  2028. *
  2029. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  2030. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2031. IRWORK = IE + N
  2032. *
  2033. * Perform bidiagonal QR iteration, computing left
  2034. * singular vectors of A in U and computing right
  2035. * singular vectors of A in VT
  2036. * (CWorkspace: 0)
  2037. * (RWorkspace: need BDSPAC)
  2038. *
  2039. CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
  2040. $ LDVT, U, LDU, CDUM, 1,
  2041. $ RWORK( IRWORK ), INFO )
  2042. *
  2043. END IF
  2044. *
  2045. END IF
  2046. *
  2047. END IF
  2048. *
  2049. ELSE
  2050. *
  2051. * M .LT. MNTHR
  2052. *
  2053. * Path 10 (M at least N, but not much larger)
  2054. * Reduce to bidiagonal form without QR decomposition
  2055. *
  2056. IE = 1
  2057. ITAUQ = 1
  2058. ITAUP = ITAUQ + N
  2059. IWORK = ITAUP + N
  2060. *
  2061. * Bidiagonalize A
  2062. * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
  2063. * (RWorkspace: need N)
  2064. *
  2065. CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  2066. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  2067. $ IERR )
  2068. IF( WNTUAS ) THEN
  2069. *
  2070. * If left singular vectors desired in U, copy result to U
  2071. * and generate left bidiagonalizing vectors in U
  2072. * (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB)
  2073. * (RWorkspace: 0)
  2074. *
  2075. CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
  2076. IF( WNTUS )
  2077. $ NCU = N
  2078. IF( WNTUA )
  2079. $ NCU = M
  2080. CALL ZUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
  2081. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2082. END IF
  2083. IF( WNTVAS ) THEN
  2084. *
  2085. * If right singular vectors desired in VT, copy result to
  2086. * VT and generate right bidiagonalizing vectors in VT
  2087. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  2088. * (RWorkspace: 0)
  2089. *
  2090. CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
  2091. CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
  2092. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2093. END IF
  2094. IF( WNTUO ) THEN
  2095. *
  2096. * If left singular vectors desired in A, generate left
  2097. * bidiagonalizing vectors in A
  2098. * (CWorkspace: need 3*N, prefer 2*N+N*NB)
  2099. * (RWorkspace: 0)
  2100. *
  2101. CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
  2102. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2103. END IF
  2104. IF( WNTVO ) THEN
  2105. *
  2106. * If right singular vectors desired in A, generate right
  2107. * bidiagonalizing vectors in A
  2108. * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  2109. * (RWorkspace: 0)
  2110. *
  2111. CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  2112. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2113. END IF
  2114. IRWORK = IE + N
  2115. IF( WNTUAS .OR. WNTUO )
  2116. $ NRU = M
  2117. IF( WNTUN )
  2118. $ NRU = 0
  2119. IF( WNTVAS .OR. WNTVO )
  2120. $ NCVT = N
  2121. IF( WNTVN )
  2122. $ NCVT = 0
  2123. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  2124. *
  2125. * Perform bidiagonal QR iteration, if desired, computing
  2126. * left singular vectors in U and computing right singular
  2127. * vectors in VT
  2128. * (CWorkspace: 0)
  2129. * (RWorkspace: need BDSPAC)
  2130. *
  2131. CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
  2132. $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
  2133. $ INFO )
  2134. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  2135. *
  2136. * Perform bidiagonal QR iteration, if desired, computing
  2137. * left singular vectors in U and computing right singular
  2138. * vectors in A
  2139. * (CWorkspace: 0)
  2140. * (RWorkspace: need BDSPAC)
  2141. *
  2142. CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A,
  2143. $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
  2144. $ INFO )
  2145. ELSE
  2146. *
  2147. * Perform bidiagonal QR iteration, if desired, computing
  2148. * left singular vectors in A and computing right singular
  2149. * vectors in VT
  2150. * (CWorkspace: 0)
  2151. * (RWorkspace: need BDSPAC)
  2152. *
  2153. CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
  2154. $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
  2155. $ INFO )
  2156. END IF
  2157. *
  2158. END IF
  2159. *
  2160. ELSE
  2161. *
  2162. * A has more columns than rows. If A has sufficiently more
  2163. * columns than rows, first reduce using the LQ decomposition (if
  2164. * sufficient workspace available)
  2165. *
  2166. IF( N.GE.MNTHR ) THEN
  2167. *
  2168. IF( WNTVN ) THEN
  2169. *
  2170. * Path 1t(N much larger than M, JOBVT='N')
  2171. * No right singular vectors to be computed
  2172. *
  2173. ITAU = 1
  2174. IWORK = ITAU + M
  2175. *
  2176. * Compute A=L*Q
  2177. * (CWorkspace: need 2*M, prefer M+M*NB)
  2178. * (RWorkspace: 0)
  2179. *
  2180. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  2181. $ LWORK-IWORK+1, IERR )
  2182. *
  2183. * Zero out above L
  2184. *
  2185. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
  2186. $ LDA )
  2187. IE = 1
  2188. ITAUQ = 1
  2189. ITAUP = ITAUQ + M
  2190. IWORK = ITAUP + M
  2191. *
  2192. * Bidiagonalize L in A
  2193. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  2194. * (RWorkspace: need M)
  2195. *
  2196. CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  2197. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  2198. $ IERR )
  2199. IF( WNTUO .OR. WNTUAS ) THEN
  2200. *
  2201. * If left singular vectors desired, generate Q
  2202. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  2203. * (RWorkspace: 0)
  2204. *
  2205. CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2206. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2207. END IF
  2208. IRWORK = IE + M
  2209. NRU = 0
  2210. IF( WNTUO .OR. WNTUAS )
  2211. $ NRU = M
  2212. *
  2213. * Perform bidiagonal QR iteration, computing left singular
  2214. * vectors of A in A if desired
  2215. * (CWorkspace: 0)
  2216. * (RWorkspace: need BDSPAC)
  2217. *
  2218. CALL ZBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1,
  2219. $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
  2220. *
  2221. * If left singular vectors desired in U, copy them there
  2222. *
  2223. IF( WNTUAS )
  2224. $ CALL ZLACPY( 'F', M, M, A, LDA, U, LDU )
  2225. *
  2226. ELSE IF( WNTVO .AND. WNTUN ) THEN
  2227. *
  2228. * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
  2229. * M right singular vectors to be overwritten on A and
  2230. * no left singular vectors to be computed
  2231. *
  2232. IF( LWORK.GE.M*M+3*M ) THEN
  2233. *
  2234. * Sufficient workspace for a fast algorithm
  2235. *
  2236. IR = 1
  2237. IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
  2238. *
  2239. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2240. *
  2241. LDWRKU = LDA
  2242. CHUNK = N
  2243. LDWRKR = LDA
  2244. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
  2245. *
  2246. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2247. *
  2248. LDWRKU = LDA
  2249. CHUNK = N
  2250. LDWRKR = M
  2251. ELSE
  2252. *
  2253. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2254. *
  2255. LDWRKU = M
  2256. CHUNK = ( LWORK-M*M ) / M
  2257. LDWRKR = M
  2258. END IF
  2259. ITAU = IR + LDWRKR*M
  2260. IWORK = ITAU + M
  2261. *
  2262. * Compute A=L*Q
  2263. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2264. * (RWorkspace: 0)
  2265. *
  2266. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2267. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2268. *
  2269. * Copy L to WORK(IR) and zero out above it
  2270. *
  2271. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
  2272. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2273. $ WORK( IR+LDWRKR ), LDWRKR )
  2274. *
  2275. * Generate Q in A
  2276. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2277. * (RWorkspace: 0)
  2278. *
  2279. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2280. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2281. IE = 1
  2282. ITAUQ = ITAU
  2283. ITAUP = ITAUQ + M
  2284. IWORK = ITAUP + M
  2285. *
  2286. * Bidiagonalize L in WORK(IR)
  2287. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  2288. * (RWorkspace: need M)
  2289. *
  2290. CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ),
  2291. $ WORK( ITAUQ ), WORK( ITAUP ),
  2292. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2293. *
  2294. * Generate right vectors bidiagonalizing L
  2295. * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
  2296. * (RWorkspace: 0)
  2297. *
  2298. CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2299. $ WORK( ITAUP ), WORK( IWORK ),
  2300. $ LWORK-IWORK+1, IERR )
  2301. IRWORK = IE + M
  2302. *
  2303. * Perform bidiagonal QR iteration, computing right
  2304. * singular vectors of L in WORK(IR)
  2305. * (CWorkspace: need M*M)
  2306. * (RWorkspace: need BDSPAC)
  2307. *
  2308. CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
  2309. $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
  2310. $ RWORK( IRWORK ), INFO )
  2311. IU = ITAUQ
  2312. *
  2313. * Multiply right singular vectors of L in WORK(IR) by Q
  2314. * in A, storing result in WORK(IU) and copying to A
  2315. * (CWorkspace: need M*M+M, prefer M*M+M*N)
  2316. * (RWorkspace: 0)
  2317. *
  2318. DO 30 I = 1, N, CHUNK
  2319. BLK = MIN( N-I+1, CHUNK )
  2320. CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
  2321. $ LDWRKR, A( 1, I ), LDA, CZERO,
  2322. $ WORK( IU ), LDWRKU )
  2323. CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2324. $ A( 1, I ), LDA )
  2325. 30 CONTINUE
  2326. *
  2327. ELSE
  2328. *
  2329. * Insufficient workspace for a fast algorithm
  2330. *
  2331. IE = 1
  2332. ITAUQ = 1
  2333. ITAUP = ITAUQ + M
  2334. IWORK = ITAUP + M
  2335. *
  2336. * Bidiagonalize A
  2337. * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  2338. * (RWorkspace: need M)
  2339. *
  2340. CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
  2341. $ WORK( ITAUQ ), WORK( ITAUP ),
  2342. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2343. *
  2344. * Generate right vectors bidiagonalizing A
  2345. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  2346. * (RWorkspace: 0)
  2347. *
  2348. CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  2349. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2350. IRWORK = IE + M
  2351. *
  2352. * Perform bidiagonal QR iteration, computing right
  2353. * singular vectors of A in A
  2354. * (CWorkspace: 0)
  2355. * (RWorkspace: need BDSPAC)
  2356. *
  2357. CALL ZBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA,
  2358. $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
  2359. *
  2360. END IF
  2361. *
  2362. ELSE IF( WNTVO .AND. WNTUAS ) THEN
  2363. *
  2364. * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
  2365. * M right singular vectors to be overwritten on A and
  2366. * M left singular vectors to be computed in U
  2367. *
  2368. IF( LWORK.GE.M*M+3*M ) THEN
  2369. *
  2370. * Sufficient workspace for a fast algorithm
  2371. *
  2372. IR = 1
  2373. IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
  2374. *
  2375. * WORK(IU) is LDA by N and WORK(IR) is LDA by M
  2376. *
  2377. LDWRKU = LDA
  2378. CHUNK = N
  2379. LDWRKR = LDA
  2380. ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
  2381. *
  2382. * WORK(IU) is LDA by N and WORK(IR) is M by M
  2383. *
  2384. LDWRKU = LDA
  2385. CHUNK = N
  2386. LDWRKR = M
  2387. ELSE
  2388. *
  2389. * WORK(IU) is M by CHUNK and WORK(IR) is M by M
  2390. *
  2391. LDWRKU = M
  2392. CHUNK = ( LWORK-M*M ) / M
  2393. LDWRKR = M
  2394. END IF
  2395. ITAU = IR + LDWRKR*M
  2396. IWORK = ITAU + M
  2397. *
  2398. * Compute A=L*Q
  2399. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2400. * (RWorkspace: 0)
  2401. *
  2402. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2403. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2404. *
  2405. * Copy L to U, zeroing about above it
  2406. *
  2407. CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
  2408. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
  2409. $ LDU )
  2410. *
  2411. * Generate Q in A
  2412. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2413. * (RWorkspace: 0)
  2414. *
  2415. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2416. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2417. IE = 1
  2418. ITAUQ = ITAU
  2419. ITAUP = ITAUQ + M
  2420. IWORK = ITAUP + M
  2421. *
  2422. * Bidiagonalize L in U, copying result to WORK(IR)
  2423. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  2424. * (RWorkspace: need M)
  2425. *
  2426. CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
  2427. $ WORK( ITAUQ ), WORK( ITAUP ),
  2428. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2429. CALL ZLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
  2430. *
  2431. * Generate right vectors bidiagonalizing L in WORK(IR)
  2432. * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
  2433. * (RWorkspace: 0)
  2434. *
  2435. CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2436. $ WORK( ITAUP ), WORK( IWORK ),
  2437. $ LWORK-IWORK+1, IERR )
  2438. *
  2439. * Generate left vectors bidiagonalizing L in U
  2440. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  2441. * (RWorkspace: 0)
  2442. *
  2443. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2444. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2445. IRWORK = IE + M
  2446. *
  2447. * Perform bidiagonal QR iteration, computing left
  2448. * singular vectors of L in U, and computing right
  2449. * singular vectors of L in WORK(IR)
  2450. * (CWorkspace: need M*M)
  2451. * (RWorkspace: need BDSPAC)
  2452. *
  2453. CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
  2454. $ WORK( IR ), LDWRKR, U, LDU, CDUM, 1,
  2455. $ RWORK( IRWORK ), INFO )
  2456. IU = ITAUQ
  2457. *
  2458. * Multiply right singular vectors of L in WORK(IR) by Q
  2459. * in A, storing result in WORK(IU) and copying to A
  2460. * (CWorkspace: need M*M+M, prefer M*M+M*N))
  2461. * (RWorkspace: 0)
  2462. *
  2463. DO 40 I = 1, N, CHUNK
  2464. BLK = MIN( N-I+1, CHUNK )
  2465. CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
  2466. $ LDWRKR, A( 1, I ), LDA, CZERO,
  2467. $ WORK( IU ), LDWRKU )
  2468. CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
  2469. $ A( 1, I ), LDA )
  2470. 40 CONTINUE
  2471. *
  2472. ELSE
  2473. *
  2474. * Insufficient workspace for a fast algorithm
  2475. *
  2476. ITAU = 1
  2477. IWORK = ITAU + M
  2478. *
  2479. * Compute A=L*Q
  2480. * (CWorkspace: need 2*M, prefer M+M*NB)
  2481. * (RWorkspace: 0)
  2482. *
  2483. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2484. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2485. *
  2486. * Copy L to U, zeroing out above it
  2487. *
  2488. CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
  2489. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
  2490. $ LDU )
  2491. *
  2492. * Generate Q in A
  2493. * (CWorkspace: need 2*M, prefer M+M*NB)
  2494. * (RWorkspace: 0)
  2495. *
  2496. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2497. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2498. IE = 1
  2499. ITAUQ = ITAU
  2500. ITAUP = ITAUQ + M
  2501. IWORK = ITAUP + M
  2502. *
  2503. * Bidiagonalize L in U
  2504. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  2505. * (RWorkspace: need M)
  2506. *
  2507. CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
  2508. $ WORK( ITAUQ ), WORK( ITAUP ),
  2509. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2510. *
  2511. * Multiply right vectors bidiagonalizing L by Q in A
  2512. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  2513. * (RWorkspace: 0)
  2514. *
  2515. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
  2516. $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
  2517. $ LWORK-IWORK+1, IERR )
  2518. *
  2519. * Generate left vectors bidiagonalizing L in U
  2520. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  2521. * (RWorkspace: 0)
  2522. *
  2523. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2524. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2525. IRWORK = IE + M
  2526. *
  2527. * Perform bidiagonal QR iteration, computing left
  2528. * singular vectors of A in U and computing right
  2529. * singular vectors of A in A
  2530. * (CWorkspace: 0)
  2531. * (RWorkspace: need BDSPAC)
  2532. *
  2533. CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA,
  2534. $ U, LDU, CDUM, 1, RWORK( IRWORK ), INFO )
  2535. *
  2536. END IF
  2537. *
  2538. ELSE IF( WNTVS ) THEN
  2539. *
  2540. IF( WNTUN ) THEN
  2541. *
  2542. * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
  2543. * M right singular vectors to be computed in VT and
  2544. * no left singular vectors to be computed
  2545. *
  2546. IF( LWORK.GE.M*M+3*M ) THEN
  2547. *
  2548. * Sufficient workspace for a fast algorithm
  2549. *
  2550. IR = 1
  2551. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2552. *
  2553. * WORK(IR) is LDA by M
  2554. *
  2555. LDWRKR = LDA
  2556. ELSE
  2557. *
  2558. * WORK(IR) is M by M
  2559. *
  2560. LDWRKR = M
  2561. END IF
  2562. ITAU = IR + LDWRKR*M
  2563. IWORK = ITAU + M
  2564. *
  2565. * Compute A=L*Q
  2566. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2567. * (RWorkspace: 0)
  2568. *
  2569. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2570. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2571. *
  2572. * Copy L to WORK(IR), zeroing out above it
  2573. *
  2574. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
  2575. $ LDWRKR )
  2576. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2577. $ WORK( IR+LDWRKR ), LDWRKR )
  2578. *
  2579. * Generate Q in A
  2580. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2581. * (RWorkspace: 0)
  2582. *
  2583. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2584. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2585. IE = 1
  2586. ITAUQ = ITAU
  2587. ITAUP = ITAUQ + M
  2588. IWORK = ITAUP + M
  2589. *
  2590. * Bidiagonalize L in WORK(IR)
  2591. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  2592. * (RWorkspace: need M)
  2593. *
  2594. CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
  2595. $ RWORK( IE ), WORK( ITAUQ ),
  2596. $ WORK( ITAUP ), WORK( IWORK ),
  2597. $ LWORK-IWORK+1, IERR )
  2598. *
  2599. * Generate right vectors bidiagonalizing L in
  2600. * WORK(IR)
  2601. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
  2602. * (RWorkspace: 0)
  2603. *
  2604. CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  2605. $ WORK( ITAUP ), WORK( IWORK ),
  2606. $ LWORK-IWORK+1, IERR )
  2607. IRWORK = IE + M
  2608. *
  2609. * Perform bidiagonal QR iteration, computing right
  2610. * singular vectors of L in WORK(IR)
  2611. * (CWorkspace: need M*M)
  2612. * (RWorkspace: need BDSPAC)
  2613. *
  2614. CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
  2615. $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
  2616. $ RWORK( IRWORK ), INFO )
  2617. *
  2618. * Multiply right singular vectors of L in WORK(IR) by
  2619. * Q in A, storing result in VT
  2620. * (CWorkspace: need M*M)
  2621. * (RWorkspace: 0)
  2622. *
  2623. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
  2624. $ LDWRKR, A, LDA, CZERO, VT, LDVT )
  2625. *
  2626. ELSE
  2627. *
  2628. * Insufficient workspace for a fast algorithm
  2629. *
  2630. ITAU = 1
  2631. IWORK = ITAU + M
  2632. *
  2633. * Compute A=L*Q
  2634. * (CWorkspace: need 2*M, prefer M+M*NB)
  2635. * (RWorkspace: 0)
  2636. *
  2637. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2638. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2639. *
  2640. * Copy result to VT
  2641. *
  2642. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2643. *
  2644. * Generate Q in VT
  2645. * (CWorkspace: need 2*M, prefer M+M*NB)
  2646. * (RWorkspace: 0)
  2647. *
  2648. CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2649. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2650. IE = 1
  2651. ITAUQ = ITAU
  2652. ITAUP = ITAUQ + M
  2653. IWORK = ITAUP + M
  2654. *
  2655. * Zero out above L in A
  2656. *
  2657. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2658. $ A( 1, 2 ), LDA )
  2659. *
  2660. * Bidiagonalize L in A
  2661. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  2662. * (RWorkspace: need M)
  2663. *
  2664. CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
  2665. $ WORK( ITAUQ ), WORK( ITAUP ),
  2666. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2667. *
  2668. * Multiply right vectors bidiagonalizing L by Q in VT
  2669. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  2670. * (RWorkspace: 0)
  2671. *
  2672. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
  2673. $ WORK( ITAUP ), VT, LDVT,
  2674. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2675. IRWORK = IE + M
  2676. *
  2677. * Perform bidiagonal QR iteration, computing right
  2678. * singular vectors of A in VT
  2679. * (CWorkspace: 0)
  2680. * (RWorkspace: need BDSPAC)
  2681. *
  2682. CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
  2683. $ LDVT, CDUM, 1, CDUM, 1,
  2684. $ RWORK( IRWORK ), INFO )
  2685. *
  2686. END IF
  2687. *
  2688. ELSE IF( WNTUO ) THEN
  2689. *
  2690. * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
  2691. * M right singular vectors to be computed in VT and
  2692. * M left singular vectors to be overwritten on A
  2693. *
  2694. IF( LWORK.GE.2*M*M+3*M ) THEN
  2695. *
  2696. * Sufficient workspace for a fast algorithm
  2697. *
  2698. IU = 1
  2699. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  2700. *
  2701. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  2702. *
  2703. LDWRKU = LDA
  2704. IR = IU + LDWRKU*M
  2705. LDWRKR = LDA
  2706. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  2707. *
  2708. * WORK(IU) is LDA by M and WORK(IR) is M by M
  2709. *
  2710. LDWRKU = LDA
  2711. IR = IU + LDWRKU*M
  2712. LDWRKR = M
  2713. ELSE
  2714. *
  2715. * WORK(IU) is M by M and WORK(IR) is M by M
  2716. *
  2717. LDWRKU = M
  2718. IR = IU + LDWRKU*M
  2719. LDWRKR = M
  2720. END IF
  2721. ITAU = IR + LDWRKR*M
  2722. IWORK = ITAU + M
  2723. *
  2724. * Compute A=L*Q
  2725. * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2726. * (RWorkspace: 0)
  2727. *
  2728. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2729. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2730. *
  2731. * Copy L to WORK(IU), zeroing out below it
  2732. *
  2733. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2734. $ LDWRKU )
  2735. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2736. $ WORK( IU+LDWRKU ), LDWRKU )
  2737. *
  2738. * Generate Q in A
  2739. * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  2740. * (RWorkspace: 0)
  2741. *
  2742. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2743. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2744. IE = 1
  2745. ITAUQ = ITAU
  2746. ITAUP = ITAUQ + M
  2747. IWORK = ITAUP + M
  2748. *
  2749. * Bidiagonalize L in WORK(IU), copying result to
  2750. * WORK(IR)
  2751. * (CWorkspace: need 2*M*M+3*M,
  2752. * prefer 2*M*M+2*M+2*M*NB)
  2753. * (RWorkspace: need M)
  2754. *
  2755. CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2756. $ RWORK( IE ), WORK( ITAUQ ),
  2757. $ WORK( ITAUP ), WORK( IWORK ),
  2758. $ LWORK-IWORK+1, IERR )
  2759. CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  2760. $ WORK( IR ), LDWRKR )
  2761. *
  2762. * Generate right bidiagonalizing vectors in WORK(IU)
  2763. * (CWorkspace: need 2*M*M+3*M-1,
  2764. * prefer 2*M*M+2*M+(M-1)*NB)
  2765. * (RWorkspace: 0)
  2766. *
  2767. CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2768. $ WORK( ITAUP ), WORK( IWORK ),
  2769. $ LWORK-IWORK+1, IERR )
  2770. *
  2771. * Generate left bidiagonalizing vectors in WORK(IR)
  2772. * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
  2773. * (RWorkspace: 0)
  2774. *
  2775. CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  2776. $ WORK( ITAUQ ), WORK( IWORK ),
  2777. $ LWORK-IWORK+1, IERR )
  2778. IRWORK = IE + M
  2779. *
  2780. * Perform bidiagonal QR iteration, computing left
  2781. * singular vectors of L in WORK(IR) and computing
  2782. * right singular vectors of L in WORK(IU)
  2783. * (CWorkspace: need 2*M*M)
  2784. * (RWorkspace: need BDSPAC)
  2785. *
  2786. CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
  2787. $ WORK( IU ), LDWRKU, WORK( IR ),
  2788. $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
  2789. $ INFO )
  2790. *
  2791. * Multiply right singular vectors of L in WORK(IU) by
  2792. * Q in A, storing result in VT
  2793. * (CWorkspace: need M*M)
  2794. * (RWorkspace: 0)
  2795. *
  2796. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
  2797. $ LDWRKU, A, LDA, CZERO, VT, LDVT )
  2798. *
  2799. * Copy left singular vectors of L to A
  2800. * (CWorkspace: need M*M)
  2801. * (RWorkspace: 0)
  2802. *
  2803. CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  2804. $ LDA )
  2805. *
  2806. ELSE
  2807. *
  2808. * Insufficient workspace for a fast algorithm
  2809. *
  2810. ITAU = 1
  2811. IWORK = ITAU + M
  2812. *
  2813. * Compute A=L*Q, copying result to VT
  2814. * (CWorkspace: need 2*M, prefer M+M*NB)
  2815. * (RWorkspace: 0)
  2816. *
  2817. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2818. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2819. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2820. *
  2821. * Generate Q in VT
  2822. * (CWorkspace: need 2*M, prefer M+M*NB)
  2823. * (RWorkspace: 0)
  2824. *
  2825. CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2826. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2827. IE = 1
  2828. ITAUQ = ITAU
  2829. ITAUP = ITAUQ + M
  2830. IWORK = ITAUP + M
  2831. *
  2832. * Zero out above L in A
  2833. *
  2834. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2835. $ A( 1, 2 ), LDA )
  2836. *
  2837. * Bidiagonalize L in A
  2838. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  2839. * (RWorkspace: need M)
  2840. *
  2841. CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
  2842. $ WORK( ITAUQ ), WORK( ITAUP ),
  2843. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2844. *
  2845. * Multiply right vectors bidiagonalizing L by Q in VT
  2846. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  2847. * (RWorkspace: 0)
  2848. *
  2849. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
  2850. $ WORK( ITAUP ), VT, LDVT,
  2851. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2852. *
  2853. * Generate left bidiagonalizing vectors of L in A
  2854. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  2855. * (RWorkspace: 0)
  2856. *
  2857. CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  2858. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2859. IRWORK = IE + M
  2860. *
  2861. * Perform bidiagonal QR iteration, computing left
  2862. * singular vectors of A in A and computing right
  2863. * singular vectors of A in VT
  2864. * (CWorkspace: 0)
  2865. * (RWorkspace: need BDSPAC)
  2866. *
  2867. CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
  2868. $ LDVT, A, LDA, CDUM, 1,
  2869. $ RWORK( IRWORK ), INFO )
  2870. *
  2871. END IF
  2872. *
  2873. ELSE IF( WNTUAS ) THEN
  2874. *
  2875. * Path 6t(N much larger than M, JOBU='S' or 'A',
  2876. * JOBVT='S')
  2877. * M right singular vectors to be computed in VT and
  2878. * M left singular vectors to be computed in U
  2879. *
  2880. IF( LWORK.GE.M*M+3*M ) THEN
  2881. *
  2882. * Sufficient workspace for a fast algorithm
  2883. *
  2884. IU = 1
  2885. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  2886. *
  2887. * WORK(IU) is LDA by N
  2888. *
  2889. LDWRKU = LDA
  2890. ELSE
  2891. *
  2892. * WORK(IU) is LDA by M
  2893. *
  2894. LDWRKU = M
  2895. END IF
  2896. ITAU = IU + LDWRKU*M
  2897. IWORK = ITAU + M
  2898. *
  2899. * Compute A=L*Q
  2900. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2901. * (RWorkspace: 0)
  2902. *
  2903. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2904. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2905. *
  2906. * Copy L to WORK(IU), zeroing out above it
  2907. *
  2908. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
  2909. $ LDWRKU )
  2910. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2911. $ WORK( IU+LDWRKU ), LDWRKU )
  2912. *
  2913. * Generate Q in A
  2914. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  2915. * (RWorkspace: 0)
  2916. *
  2917. CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
  2918. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2919. IE = 1
  2920. ITAUQ = ITAU
  2921. ITAUP = ITAUQ + M
  2922. IWORK = ITAUP + M
  2923. *
  2924. * Bidiagonalize L in WORK(IU), copying result to U
  2925. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  2926. * (RWorkspace: need M)
  2927. *
  2928. CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
  2929. $ RWORK( IE ), WORK( ITAUQ ),
  2930. $ WORK( ITAUP ), WORK( IWORK ),
  2931. $ LWORK-IWORK+1, IERR )
  2932. CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  2933. $ LDU )
  2934. *
  2935. * Generate right bidiagonalizing vectors in WORK(IU)
  2936. * (CWorkspace: need M*M+3*M-1,
  2937. * prefer M*M+2*M+(M-1)*NB)
  2938. * (RWorkspace: 0)
  2939. *
  2940. CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  2941. $ WORK( ITAUP ), WORK( IWORK ),
  2942. $ LWORK-IWORK+1, IERR )
  2943. *
  2944. * Generate left bidiagonalizing vectors in U
  2945. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  2946. * (RWorkspace: 0)
  2947. *
  2948. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  2949. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2950. IRWORK = IE + M
  2951. *
  2952. * Perform bidiagonal QR iteration, computing left
  2953. * singular vectors of L in U and computing right
  2954. * singular vectors of L in WORK(IU)
  2955. * (CWorkspace: need M*M)
  2956. * (RWorkspace: need BDSPAC)
  2957. *
  2958. CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
  2959. $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
  2960. $ RWORK( IRWORK ), INFO )
  2961. *
  2962. * Multiply right singular vectors of L in WORK(IU) by
  2963. * Q in A, storing result in VT
  2964. * (CWorkspace: need M*M)
  2965. * (RWorkspace: 0)
  2966. *
  2967. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
  2968. $ LDWRKU, A, LDA, CZERO, VT, LDVT )
  2969. *
  2970. ELSE
  2971. *
  2972. * Insufficient workspace for a fast algorithm
  2973. *
  2974. ITAU = 1
  2975. IWORK = ITAU + M
  2976. *
  2977. * Compute A=L*Q, copying result to VT
  2978. * (CWorkspace: need 2*M, prefer M+M*NB)
  2979. * (RWorkspace: 0)
  2980. *
  2981. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  2982. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2983. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  2984. *
  2985. * Generate Q in VT
  2986. * (CWorkspace: need 2*M, prefer M+M*NB)
  2987. * (RWorkspace: 0)
  2988. *
  2989. CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
  2990. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  2991. *
  2992. * Copy L to U, zeroing out above it
  2993. *
  2994. CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
  2995. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  2996. $ U( 1, 2 ), LDU )
  2997. IE = 1
  2998. ITAUQ = ITAU
  2999. ITAUP = ITAUQ + M
  3000. IWORK = ITAUP + M
  3001. *
  3002. * Bidiagonalize L in U
  3003. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  3004. * (RWorkspace: need M)
  3005. *
  3006. CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
  3007. $ WORK( ITAUQ ), WORK( ITAUP ),
  3008. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3009. *
  3010. * Multiply right bidiagonalizing vectors in U by Q
  3011. * in VT
  3012. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  3013. * (RWorkspace: 0)
  3014. *
  3015. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
  3016. $ WORK( ITAUP ), VT, LDVT,
  3017. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3018. *
  3019. * Generate left bidiagonalizing vectors in U
  3020. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  3021. * (RWorkspace: 0)
  3022. *
  3023. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3024. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3025. IRWORK = IE + M
  3026. *
  3027. * Perform bidiagonal QR iteration, computing left
  3028. * singular vectors of A in U and computing right
  3029. * singular vectors of A in VT
  3030. * (CWorkspace: 0)
  3031. * (RWorkspace: need BDSPAC)
  3032. *
  3033. CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
  3034. $ LDVT, U, LDU, CDUM, 1,
  3035. $ RWORK( IRWORK ), INFO )
  3036. *
  3037. END IF
  3038. *
  3039. END IF
  3040. *
  3041. ELSE IF( WNTVA ) THEN
  3042. *
  3043. IF( WNTUN ) THEN
  3044. *
  3045. * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
  3046. * N right singular vectors to be computed in VT and
  3047. * no left singular vectors to be computed
  3048. *
  3049. IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
  3050. *
  3051. * Sufficient workspace for a fast algorithm
  3052. *
  3053. IR = 1
  3054. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  3055. *
  3056. * WORK(IR) is LDA by M
  3057. *
  3058. LDWRKR = LDA
  3059. ELSE
  3060. *
  3061. * WORK(IR) is M by M
  3062. *
  3063. LDWRKR = M
  3064. END IF
  3065. ITAU = IR + LDWRKR*M
  3066. IWORK = ITAU + M
  3067. *
  3068. * Compute A=L*Q, copying result to VT
  3069. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  3070. * (RWorkspace: 0)
  3071. *
  3072. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3073. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3074. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3075. *
  3076. * Copy L to WORK(IR), zeroing out above it
  3077. *
  3078. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
  3079. $ LDWRKR )
  3080. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3081. $ WORK( IR+LDWRKR ), LDWRKR )
  3082. *
  3083. * Generate Q in VT
  3084. * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
  3085. * (RWorkspace: 0)
  3086. *
  3087. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3088. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3089. IE = 1
  3090. ITAUQ = ITAU
  3091. ITAUP = ITAUQ + M
  3092. IWORK = ITAUP + M
  3093. *
  3094. * Bidiagonalize L in WORK(IR)
  3095. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  3096. * (RWorkspace: need M)
  3097. *
  3098. CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
  3099. $ RWORK( IE ), WORK( ITAUQ ),
  3100. $ WORK( ITAUP ), WORK( IWORK ),
  3101. $ LWORK-IWORK+1, IERR )
  3102. *
  3103. * Generate right bidiagonalizing vectors in WORK(IR)
  3104. * (CWorkspace: need M*M+3*M-1,
  3105. * prefer M*M+2*M+(M-1)*NB)
  3106. * (RWorkspace: 0)
  3107. *
  3108. CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
  3109. $ WORK( ITAUP ), WORK( IWORK ),
  3110. $ LWORK-IWORK+1, IERR )
  3111. IRWORK = IE + M
  3112. *
  3113. * Perform bidiagonal QR iteration, computing right
  3114. * singular vectors of L in WORK(IR)
  3115. * (CWorkspace: need M*M)
  3116. * (RWorkspace: need BDSPAC)
  3117. *
  3118. CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
  3119. $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
  3120. $ RWORK( IRWORK ), INFO )
  3121. *
  3122. * Multiply right singular vectors of L in WORK(IR) by
  3123. * Q in VT, storing result in A
  3124. * (CWorkspace: need M*M)
  3125. * (RWorkspace: 0)
  3126. *
  3127. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
  3128. $ LDWRKR, VT, LDVT, CZERO, A, LDA )
  3129. *
  3130. * Copy right singular vectors of A from A to VT
  3131. *
  3132. CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3133. *
  3134. ELSE
  3135. *
  3136. * Insufficient workspace for a fast algorithm
  3137. *
  3138. ITAU = 1
  3139. IWORK = ITAU + M
  3140. *
  3141. * Compute A=L*Q, copying result to VT
  3142. * (CWorkspace: need 2*M, prefer M+M*NB)
  3143. * (RWorkspace: 0)
  3144. *
  3145. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3146. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3147. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3148. *
  3149. * Generate Q in VT
  3150. * (CWorkspace: need M+N, prefer M+N*NB)
  3151. * (RWorkspace: 0)
  3152. *
  3153. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3154. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3155. IE = 1
  3156. ITAUQ = ITAU
  3157. ITAUP = ITAUQ + M
  3158. IWORK = ITAUP + M
  3159. *
  3160. * Zero out above L in A
  3161. *
  3162. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3163. $ A( 1, 2 ), LDA )
  3164. *
  3165. * Bidiagonalize L in A
  3166. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  3167. * (RWorkspace: need M)
  3168. *
  3169. CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
  3170. $ WORK( ITAUQ ), WORK( ITAUP ),
  3171. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3172. *
  3173. * Multiply right bidiagonalizing vectors in A by Q
  3174. * in VT
  3175. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  3176. * (RWorkspace: 0)
  3177. *
  3178. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
  3179. $ WORK( ITAUP ), VT, LDVT,
  3180. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3181. IRWORK = IE + M
  3182. *
  3183. * Perform bidiagonal QR iteration, computing right
  3184. * singular vectors of A in VT
  3185. * (CWorkspace: 0)
  3186. * (RWorkspace: need BDSPAC)
  3187. *
  3188. CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
  3189. $ LDVT, CDUM, 1, CDUM, 1,
  3190. $ RWORK( IRWORK ), INFO )
  3191. *
  3192. END IF
  3193. *
  3194. ELSE IF( WNTUO ) THEN
  3195. *
  3196. * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
  3197. * N right singular vectors to be computed in VT and
  3198. * M left singular vectors to be overwritten on A
  3199. *
  3200. IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN
  3201. *
  3202. * Sufficient workspace for a fast algorithm
  3203. *
  3204. IU = 1
  3205. IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
  3206. *
  3207. * WORK(IU) is LDA by M and WORK(IR) is LDA by M
  3208. *
  3209. LDWRKU = LDA
  3210. IR = IU + LDWRKU*M
  3211. LDWRKR = LDA
  3212. ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
  3213. *
  3214. * WORK(IU) is LDA by M and WORK(IR) is M by M
  3215. *
  3216. LDWRKU = LDA
  3217. IR = IU + LDWRKU*M
  3218. LDWRKR = M
  3219. ELSE
  3220. *
  3221. * WORK(IU) is M by M and WORK(IR) is M by M
  3222. *
  3223. LDWRKU = M
  3224. IR = IU + LDWRKU*M
  3225. LDWRKR = M
  3226. END IF
  3227. ITAU = IR + LDWRKR*M
  3228. IWORK = ITAU + M
  3229. *
  3230. * Compute A=L*Q, copying result to VT
  3231. * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
  3232. * (RWorkspace: 0)
  3233. *
  3234. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3235. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3236. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3237. *
  3238. * Generate Q in VT
  3239. * (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
  3240. * (RWorkspace: 0)
  3241. *
  3242. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3243. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3244. *
  3245. * Copy L to WORK(IU), zeroing out above it
  3246. *
  3247. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3248. $ LDWRKU )
  3249. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3250. $ WORK( IU+LDWRKU ), LDWRKU )
  3251. IE = 1
  3252. ITAUQ = ITAU
  3253. ITAUP = ITAUQ + M
  3254. IWORK = ITAUP + M
  3255. *
  3256. * Bidiagonalize L in WORK(IU), copying result to
  3257. * WORK(IR)
  3258. * (CWorkspace: need 2*M*M+3*M,
  3259. * prefer 2*M*M+2*M+2*M*NB)
  3260. * (RWorkspace: need M)
  3261. *
  3262. CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3263. $ RWORK( IE ), WORK( ITAUQ ),
  3264. $ WORK( ITAUP ), WORK( IWORK ),
  3265. $ LWORK-IWORK+1, IERR )
  3266. CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
  3267. $ WORK( IR ), LDWRKR )
  3268. *
  3269. * Generate right bidiagonalizing vectors in WORK(IU)
  3270. * (CWorkspace: need 2*M*M+3*M-1,
  3271. * prefer 2*M*M+2*M+(M-1)*NB)
  3272. * (RWorkspace: 0)
  3273. *
  3274. CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3275. $ WORK( ITAUP ), WORK( IWORK ),
  3276. $ LWORK-IWORK+1, IERR )
  3277. *
  3278. * Generate left bidiagonalizing vectors in WORK(IR)
  3279. * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
  3280. * (RWorkspace: 0)
  3281. *
  3282. CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
  3283. $ WORK( ITAUQ ), WORK( IWORK ),
  3284. $ LWORK-IWORK+1, IERR )
  3285. IRWORK = IE + M
  3286. *
  3287. * Perform bidiagonal QR iteration, computing left
  3288. * singular vectors of L in WORK(IR) and computing
  3289. * right singular vectors of L in WORK(IU)
  3290. * (CWorkspace: need 2*M*M)
  3291. * (RWorkspace: need BDSPAC)
  3292. *
  3293. CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
  3294. $ WORK( IU ), LDWRKU, WORK( IR ),
  3295. $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
  3296. $ INFO )
  3297. *
  3298. * Multiply right singular vectors of L in WORK(IU) by
  3299. * Q in VT, storing result in A
  3300. * (CWorkspace: need M*M)
  3301. * (RWorkspace: 0)
  3302. *
  3303. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
  3304. $ LDWRKU, VT, LDVT, CZERO, A, LDA )
  3305. *
  3306. * Copy right singular vectors of A from A to VT
  3307. *
  3308. CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3309. *
  3310. * Copy left singular vectors of A from WORK(IR) to A
  3311. *
  3312. CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
  3313. $ LDA )
  3314. *
  3315. ELSE
  3316. *
  3317. * Insufficient workspace for a fast algorithm
  3318. *
  3319. ITAU = 1
  3320. IWORK = ITAU + M
  3321. *
  3322. * Compute A=L*Q, copying result to VT
  3323. * (CWorkspace: need 2*M, prefer M+M*NB)
  3324. * (RWorkspace: 0)
  3325. *
  3326. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3327. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3328. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3329. *
  3330. * Generate Q in VT
  3331. * (CWorkspace: need M+N, prefer M+N*NB)
  3332. * (RWorkspace: 0)
  3333. *
  3334. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3335. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3336. IE = 1
  3337. ITAUQ = ITAU
  3338. ITAUP = ITAUQ + M
  3339. IWORK = ITAUP + M
  3340. *
  3341. * Zero out above L in A
  3342. *
  3343. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3344. $ A( 1, 2 ), LDA )
  3345. *
  3346. * Bidiagonalize L in A
  3347. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  3348. * (RWorkspace: need M)
  3349. *
  3350. CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
  3351. $ WORK( ITAUQ ), WORK( ITAUP ),
  3352. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3353. *
  3354. * Multiply right bidiagonalizing vectors in A by Q
  3355. * in VT
  3356. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  3357. * (RWorkspace: 0)
  3358. *
  3359. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
  3360. $ WORK( ITAUP ), VT, LDVT,
  3361. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3362. *
  3363. * Generate left bidiagonalizing vectors in A
  3364. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  3365. * (RWorkspace: 0)
  3366. *
  3367. CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
  3368. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3369. IRWORK = IE + M
  3370. *
  3371. * Perform bidiagonal QR iteration, computing left
  3372. * singular vectors of A in A and computing right
  3373. * singular vectors of A in VT
  3374. * (CWorkspace: 0)
  3375. * (RWorkspace: need BDSPAC)
  3376. *
  3377. CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
  3378. $ LDVT, A, LDA, CDUM, 1,
  3379. $ RWORK( IRWORK ), INFO )
  3380. *
  3381. END IF
  3382. *
  3383. ELSE IF( WNTUAS ) THEN
  3384. *
  3385. * Path 9t(N much larger than M, JOBU='S' or 'A',
  3386. * JOBVT='A')
  3387. * N right singular vectors to be computed in VT and
  3388. * M left singular vectors to be computed in U
  3389. *
  3390. IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
  3391. *
  3392. * Sufficient workspace for a fast algorithm
  3393. *
  3394. IU = 1
  3395. IF( LWORK.GE.WRKBL+LDA*M ) THEN
  3396. *
  3397. * WORK(IU) is LDA by M
  3398. *
  3399. LDWRKU = LDA
  3400. ELSE
  3401. *
  3402. * WORK(IU) is M by M
  3403. *
  3404. LDWRKU = M
  3405. END IF
  3406. ITAU = IU + LDWRKU*M
  3407. IWORK = ITAU + M
  3408. *
  3409. * Compute A=L*Q, copying result to VT
  3410. * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
  3411. * (RWorkspace: 0)
  3412. *
  3413. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3414. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3415. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3416. *
  3417. * Generate Q in VT
  3418. * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
  3419. * (RWorkspace: 0)
  3420. *
  3421. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3422. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3423. *
  3424. * Copy L to WORK(IU), zeroing out above it
  3425. *
  3426. CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
  3427. $ LDWRKU )
  3428. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3429. $ WORK( IU+LDWRKU ), LDWRKU )
  3430. IE = 1
  3431. ITAUQ = ITAU
  3432. ITAUP = ITAUQ + M
  3433. IWORK = ITAUP + M
  3434. *
  3435. * Bidiagonalize L in WORK(IU), copying result to U
  3436. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
  3437. * (RWorkspace: need M)
  3438. *
  3439. CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
  3440. $ RWORK( IE ), WORK( ITAUQ ),
  3441. $ WORK( ITAUP ), WORK( IWORK ),
  3442. $ LWORK-IWORK+1, IERR )
  3443. CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
  3444. $ LDU )
  3445. *
  3446. * Generate right bidiagonalizing vectors in WORK(IU)
  3447. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
  3448. * (RWorkspace: 0)
  3449. *
  3450. CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
  3451. $ WORK( ITAUP ), WORK( IWORK ),
  3452. $ LWORK-IWORK+1, IERR )
  3453. *
  3454. * Generate left bidiagonalizing vectors in U
  3455. * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
  3456. * (RWorkspace: 0)
  3457. *
  3458. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3459. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3460. IRWORK = IE + M
  3461. *
  3462. * Perform bidiagonal QR iteration, computing left
  3463. * singular vectors of L in U and computing right
  3464. * singular vectors of L in WORK(IU)
  3465. * (CWorkspace: need M*M)
  3466. * (RWorkspace: need BDSPAC)
  3467. *
  3468. CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
  3469. $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
  3470. $ RWORK( IRWORK ), INFO )
  3471. *
  3472. * Multiply right singular vectors of L in WORK(IU) by
  3473. * Q in VT, storing result in A
  3474. * (CWorkspace: need M*M)
  3475. * (RWorkspace: 0)
  3476. *
  3477. CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
  3478. $ LDWRKU, VT, LDVT, CZERO, A, LDA )
  3479. *
  3480. * Copy right singular vectors of A from A to VT
  3481. *
  3482. CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
  3483. *
  3484. ELSE
  3485. *
  3486. * Insufficient workspace for a fast algorithm
  3487. *
  3488. ITAU = 1
  3489. IWORK = ITAU + M
  3490. *
  3491. * Compute A=L*Q, copying result to VT
  3492. * (CWorkspace: need 2*M, prefer M+M*NB)
  3493. * (RWorkspace: 0)
  3494. *
  3495. CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
  3496. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3497. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3498. *
  3499. * Generate Q in VT
  3500. * (CWorkspace: need M+N, prefer M+N*NB)
  3501. * (RWorkspace: 0)
  3502. *
  3503. CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
  3504. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3505. *
  3506. * Copy L to U, zeroing out above it
  3507. *
  3508. CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
  3509. CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
  3510. $ U( 1, 2 ), LDU )
  3511. IE = 1
  3512. ITAUQ = ITAU
  3513. ITAUP = ITAUQ + M
  3514. IWORK = ITAUP + M
  3515. *
  3516. * Bidiagonalize L in U
  3517. * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
  3518. * (RWorkspace: need M)
  3519. *
  3520. CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
  3521. $ WORK( ITAUQ ), WORK( ITAUP ),
  3522. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3523. *
  3524. * Multiply right bidiagonalizing vectors in U by Q
  3525. * in VT
  3526. * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
  3527. * (RWorkspace: 0)
  3528. *
  3529. CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
  3530. $ WORK( ITAUP ), VT, LDVT,
  3531. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3532. *
  3533. * Generate left bidiagonalizing vectors in U
  3534. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  3535. * (RWorkspace: 0)
  3536. *
  3537. CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
  3538. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3539. IRWORK = IE + M
  3540. *
  3541. * Perform bidiagonal QR iteration, computing left
  3542. * singular vectors of A in U and computing right
  3543. * singular vectors of A in VT
  3544. * (CWorkspace: 0)
  3545. * (RWorkspace: need BDSPAC)
  3546. *
  3547. CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
  3548. $ LDVT, U, LDU, CDUM, 1,
  3549. $ RWORK( IRWORK ), INFO )
  3550. *
  3551. END IF
  3552. *
  3553. END IF
  3554. *
  3555. END IF
  3556. *
  3557. ELSE
  3558. *
  3559. * N .LT. MNTHR
  3560. *
  3561. * Path 10t(N greater than M, but not much larger)
  3562. * Reduce to bidiagonal form without LQ decomposition
  3563. *
  3564. IE = 1
  3565. ITAUQ = 1
  3566. ITAUP = ITAUQ + M
  3567. IWORK = ITAUP + M
  3568. *
  3569. * Bidiagonalize A
  3570. * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  3571. * (RWorkspace: M)
  3572. *
  3573. CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  3574. $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  3575. $ IERR )
  3576. IF( WNTUAS ) THEN
  3577. *
  3578. * If left singular vectors desired in U, copy result to U
  3579. * and generate left bidiagonalizing vectors in U
  3580. * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
  3581. * (RWorkspace: 0)
  3582. *
  3583. CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
  3584. CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
  3585. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3586. END IF
  3587. IF( WNTVAS ) THEN
  3588. *
  3589. * If right singular vectors desired in VT, copy result to
  3590. * VT and generate right bidiagonalizing vectors in VT
  3591. * (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB)
  3592. * (RWorkspace: 0)
  3593. *
  3594. CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
  3595. IF( WNTVA )
  3596. $ NRVT = N
  3597. IF( WNTVS )
  3598. $ NRVT = M
  3599. CALL ZUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
  3600. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3601. END IF
  3602. IF( WNTUO ) THEN
  3603. *
  3604. * If left singular vectors desired in A, generate left
  3605. * bidiagonalizing vectors in A
  3606. * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
  3607. * (RWorkspace: 0)
  3608. *
  3609. CALL ZUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
  3610. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3611. END IF
  3612. IF( WNTVO ) THEN
  3613. *
  3614. * If right singular vectors desired in A, generate right
  3615. * bidiagonalizing vectors in A
  3616. * (CWorkspace: need 3*M, prefer 2*M+M*NB)
  3617. * (RWorkspace: 0)
  3618. *
  3619. CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  3620. $ WORK( IWORK ), LWORK-IWORK+1, IERR )
  3621. END IF
  3622. IRWORK = IE + M
  3623. IF( WNTUAS .OR. WNTUO )
  3624. $ NRU = M
  3625. IF( WNTUN )
  3626. $ NRU = 0
  3627. IF( WNTVAS .OR. WNTVO )
  3628. $ NCVT = N
  3629. IF( WNTVN )
  3630. $ NCVT = 0
  3631. IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
  3632. *
  3633. * Perform bidiagonal QR iteration, if desired, computing
  3634. * left singular vectors in U and computing right singular
  3635. * vectors in VT
  3636. * (CWorkspace: 0)
  3637. * (RWorkspace: need BDSPAC)
  3638. *
  3639. CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
  3640. $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
  3641. $ INFO )
  3642. ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
  3643. *
  3644. * Perform bidiagonal QR iteration, if desired, computing
  3645. * left singular vectors in U and computing right singular
  3646. * vectors in A
  3647. * (CWorkspace: 0)
  3648. * (RWorkspace: need BDSPAC)
  3649. *
  3650. CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A,
  3651. $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
  3652. $ INFO )
  3653. ELSE
  3654. *
  3655. * Perform bidiagonal QR iteration, if desired, computing
  3656. * left singular vectors in A and computing right singular
  3657. * vectors in VT
  3658. * (CWorkspace: 0)
  3659. * (RWorkspace: need BDSPAC)
  3660. *
  3661. CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
  3662. $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
  3663. $ INFO )
  3664. END IF
  3665. *
  3666. END IF
  3667. *
  3668. END IF
  3669. *
  3670. * Undo scaling if necessary
  3671. *
  3672. IF( ISCL.EQ.1 ) THEN
  3673. IF( ANRM.GT.BIGNUM )
  3674. $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  3675. $ IERR )
  3676. IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
  3677. $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
  3678. $ RWORK( IE ), MINMN, IERR )
  3679. IF( ANRM.LT.SMLNUM )
  3680. $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  3681. $ IERR )
  3682. IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
  3683. $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
  3684. $ RWORK( IE ), MINMN, IERR )
  3685. END IF
  3686. *
  3687. * Return optimal workspace in WORK(1)
  3688. *
  3689. WORK( 1 ) = MAXWRK
  3690. *
  3691. RETURN
  3692. *
  3693. * End of ZGESVD
  3694. *
  3695. END