You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeev.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. *> \brief <b> CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGEEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
  22. * WORK, LWORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBVL, JOBVR
  26. * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL RWORK( * )
  30. * COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  31. * $ W( * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CGEEV computes for an N-by-N complex nonsymmetric matrix A, the
  41. *> eigenvalues and, optionally, the left and/or right eigenvectors.
  42. *>
  43. *> The right eigenvector v(j) of A satisfies
  44. *> A * v(j) = lambda(j) * v(j)
  45. *> where lambda(j) is its eigenvalue.
  46. *> The left eigenvector u(j) of A satisfies
  47. *> u(j)**H * A = lambda(j) * u(j)**H
  48. *> where u(j)**H denotes the conjugate transpose of u(j).
  49. *>
  50. *> The computed eigenvectors are normalized to have Euclidean norm
  51. *> equal to 1 and largest component real.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] JOBVL
  58. *> \verbatim
  59. *> JOBVL is CHARACTER*1
  60. *> = 'N': left eigenvectors of A are not computed;
  61. *> = 'V': left eigenvectors of are computed.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] JOBVR
  65. *> \verbatim
  66. *> JOBVR is CHARACTER*1
  67. *> = 'N': right eigenvectors of A are not computed;
  68. *> = 'V': right eigenvectors of A are computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrix A. N >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in,out] A
  78. *> \verbatim
  79. *> A is COMPLEX array, dimension (LDA,N)
  80. *> On entry, the N-by-N matrix A.
  81. *> On exit, A has been overwritten.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] W
  91. *> \verbatim
  92. *> W is COMPLEX array, dimension (N)
  93. *> W contains the computed eigenvalues.
  94. *> \endverbatim
  95. *>
  96. *> \param[out] VL
  97. *> \verbatim
  98. *> VL is COMPLEX array, dimension (LDVL,N)
  99. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  100. *> after another in the columns of VL, in the same order
  101. *> as their eigenvalues.
  102. *> If JOBVL = 'N', VL is not referenced.
  103. *> u(j) = VL(:,j), the j-th column of VL.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDVL
  107. *> \verbatim
  108. *> LDVL is INTEGER
  109. *> The leading dimension of the array VL. LDVL >= 1; if
  110. *> JOBVL = 'V', LDVL >= N.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] VR
  114. *> \verbatim
  115. *> VR is COMPLEX array, dimension (LDVR,N)
  116. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  117. *> after another in the columns of VR, in the same order
  118. *> as their eigenvalues.
  119. *> If JOBVR = 'N', VR is not referenced.
  120. *> v(j) = VR(:,j), the j-th column of VR.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDVR
  124. *> \verbatim
  125. *> LDVR is INTEGER
  126. *> The leading dimension of the array VR. LDVR >= 1; if
  127. *> JOBVR = 'V', LDVR >= N.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  133. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LWORK
  137. *> \verbatim
  138. *> LWORK is INTEGER
  139. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  140. *> For good performance, LWORK must generally be larger.
  141. *>
  142. *> If LWORK = -1, then a workspace query is assumed; the routine
  143. *> only calculates the optimal size of the WORK array, returns
  144. *> this value as the first entry of the WORK array, and no error
  145. *> message related to LWORK is issued by XERBLA.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] RWORK
  149. *> \verbatim
  150. *> RWORK is REAL array, dimension (2*N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] INFO
  154. *> \verbatim
  155. *> INFO is INTEGER
  156. *> = 0: successful exit
  157. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  158. *> > 0: if INFO = i, the QR algorithm failed to compute all the
  159. *> eigenvalues, and no eigenvectors have been computed;
  160. *> elements i+1:N of W contain eigenvalues which have
  161. *> converged.
  162. *> \endverbatim
  163. *
  164. * Authors:
  165. * ========
  166. *
  167. *> \author Univ. of Tennessee
  168. *> \author Univ. of California Berkeley
  169. *> \author Univ. of Colorado Denver
  170. *> \author NAG Ltd.
  171. *
  172. *
  173. * @generated from zgeev.f, fortran z -> c, Tue Apr 19 01:47:44 2016
  174. *
  175. *> \ingroup geev
  176. *
  177. * =====================================================================
  178. SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
  179. $ WORK, LWORK, RWORK, INFO )
  180. implicit none
  181. *
  182. * -- LAPACK driver routine --
  183. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  184. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  185. *
  186. * .. Scalar Arguments ..
  187. CHARACTER JOBVL, JOBVR
  188. INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  189. * ..
  190. * .. Array Arguments ..
  191. REAL RWORK( * )
  192. COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  193. $ W( * ), WORK( * )
  194. * ..
  195. *
  196. * =====================================================================
  197. *
  198. * .. Parameters ..
  199. REAL ZERO, ONE
  200. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  201. * ..
  202. * .. Local Scalars ..
  203. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
  204. CHARACTER SIDE
  205. INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
  206. $ IWRK, K, LWORK_TREVC, MAXWRK, MINWRK, NOUT
  207. REAL ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
  208. COMPLEX TMP
  209. * ..
  210. * .. Local Arrays ..
  211. LOGICAL SELECT( 1 )
  212. REAL DUM( 1 )
  213. * ..
  214. * .. External Subroutines ..
  215. EXTERNAL XERBLA, CSSCAL, CGEBAK, CGEBAL, CGEHRD,
  216. $ CHSEQR, CLACPY, CLASCL, CSCAL, CTREVC3, CUNGHR
  217. * ..
  218. * .. External Functions ..
  219. LOGICAL LSAME
  220. INTEGER ISAMAX, ILAENV
  221. REAL SLAMCH, SCNRM2, CLANGE, SROUNDUP_LWORK
  222. EXTERNAL LSAME, ISAMAX, ILAENV, SLAMCH, SCNRM2, CLANGE,
  223. $ SROUNDUP_LWORK
  224. * ..
  225. * .. Intrinsic Functions ..
  226. INTRINSIC REAL, CMPLX, CONJG, AIMAG, MAX, SQRT
  227. * ..
  228. * .. Executable Statements ..
  229. *
  230. * Test the input arguments
  231. *
  232. INFO = 0
  233. LQUERY = ( LWORK.EQ.-1 )
  234. WANTVL = LSAME( JOBVL, 'V' )
  235. WANTVR = LSAME( JOBVR, 'V' )
  236. IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  237. INFO = -1
  238. ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  239. INFO = -2
  240. ELSE IF( N.LT.0 ) THEN
  241. INFO = -3
  242. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  243. INFO = -5
  244. ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  245. INFO = -8
  246. ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  247. INFO = -10
  248. END IF
  249. *
  250. * Compute workspace
  251. * (Note: Comments in the code beginning "Workspace:" describe the
  252. * minimal amount of workspace needed at that point in the code,
  253. * as well as the preferred amount for good performance.
  254. * CWorkspace refers to complex workspace, and RWorkspace to real
  255. * workspace. NB refers to the optimal block size for the
  256. * immediately following subroutine, as returned by ILAENV.
  257. * HSWORK refers to the workspace preferred by CHSEQR, as
  258. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  259. * the worst case.)
  260. *
  261. IF( INFO.EQ.0 ) THEN
  262. IF( N.EQ.0 ) THEN
  263. MINWRK = 1
  264. MAXWRK = 1
  265. ELSE
  266. MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
  267. MINWRK = 2*N
  268. IF( WANTVL ) THEN
  269. MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
  270. $ ' ', N, 1, N, -1 ) )
  271. CALL CTREVC3( 'L', 'B', SELECT, N, A, LDA,
  272. $ VL, LDVL, VR, LDVR,
  273. $ N, NOUT, WORK, -1, RWORK, -1, IERR )
  274. LWORK_TREVC = INT( WORK(1) )
  275. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  276. CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
  277. $ WORK, -1, INFO )
  278. ELSE IF( WANTVR ) THEN
  279. MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
  280. $ ' ', N, 1, N, -1 ) )
  281. CALL CTREVC3( 'R', 'B', SELECT, N, A, LDA,
  282. $ VL, LDVL, VR, LDVR,
  283. $ N, NOUT, WORK, -1, RWORK, -1, IERR )
  284. LWORK_TREVC = INT( WORK(1) )
  285. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  286. CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
  287. $ WORK, -1, INFO )
  288. ELSE
  289. CALL CHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  290. $ WORK, -1, INFO )
  291. END IF
  292. HSWORK = INT( WORK(1) )
  293. MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
  294. END IF
  295. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  296. *
  297. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  298. INFO = -12
  299. END IF
  300. END IF
  301. *
  302. IF( INFO.NE.0 ) THEN
  303. CALL XERBLA( 'CGEEV ', -INFO )
  304. RETURN
  305. ELSE IF( LQUERY ) THEN
  306. RETURN
  307. END IF
  308. *
  309. * Quick return if possible
  310. *
  311. IF( N.EQ.0 )
  312. $ RETURN
  313. *
  314. * Get machine constants
  315. *
  316. EPS = SLAMCH( 'P' )
  317. SMLNUM = SLAMCH( 'S' )
  318. BIGNUM = ONE / SMLNUM
  319. SMLNUM = SQRT( SMLNUM ) / EPS
  320. BIGNUM = ONE / SMLNUM
  321. *
  322. * Scale A if max element outside range [SMLNUM,BIGNUM]
  323. *
  324. ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
  325. SCALEA = .FALSE.
  326. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  327. SCALEA = .TRUE.
  328. CSCALE = SMLNUM
  329. ELSE IF( ANRM.GT.BIGNUM ) THEN
  330. SCALEA = .TRUE.
  331. CSCALE = BIGNUM
  332. END IF
  333. IF( SCALEA )
  334. $ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  335. *
  336. * Balance the matrix
  337. * (CWorkspace: none)
  338. * (RWorkspace: need N)
  339. *
  340. IBAL = 1
  341. CALL CGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
  342. *
  343. * Reduce to upper Hessenberg form
  344. * (CWorkspace: need 2*N, prefer N+N*NB)
  345. * (RWorkspace: none)
  346. *
  347. ITAU = 1
  348. IWRK = ITAU + N
  349. CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  350. $ LWORK-IWRK+1, IERR )
  351. *
  352. IF( WANTVL ) THEN
  353. *
  354. * Want left eigenvectors
  355. * Copy Householder vectors to VL
  356. *
  357. SIDE = 'L'
  358. CALL CLACPY( 'L', N, N, A, LDA, VL, LDVL )
  359. *
  360. * Generate unitary matrix in VL
  361. * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  362. * (RWorkspace: none)
  363. *
  364. CALL CUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  365. $ LWORK-IWRK+1, IERR )
  366. *
  367. * Perform QR iteration, accumulating Schur vectors in VL
  368. * (CWorkspace: need 1, prefer HSWORK (see comments) )
  369. * (RWorkspace: none)
  370. *
  371. IWRK = ITAU
  372. CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
  373. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  374. *
  375. IF( WANTVR ) THEN
  376. *
  377. * Want left and right eigenvectors
  378. * Copy Schur vectors to VR
  379. *
  380. SIDE = 'B'
  381. CALL CLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  382. END IF
  383. *
  384. ELSE IF( WANTVR ) THEN
  385. *
  386. * Want right eigenvectors
  387. * Copy Householder vectors to VR
  388. *
  389. SIDE = 'R'
  390. CALL CLACPY( 'L', N, N, A, LDA, VR, LDVR )
  391. *
  392. * Generate unitary matrix in VR
  393. * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  394. * (RWorkspace: none)
  395. *
  396. CALL CUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  397. $ LWORK-IWRK+1, IERR )
  398. *
  399. * Perform QR iteration, accumulating Schur vectors in VR
  400. * (CWorkspace: need 1, prefer HSWORK (see comments) )
  401. * (RWorkspace: none)
  402. *
  403. IWRK = ITAU
  404. CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
  405. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  406. *
  407. ELSE
  408. *
  409. * Compute eigenvalues only
  410. * (CWorkspace: need 1, prefer HSWORK (see comments) )
  411. * (RWorkspace: none)
  412. *
  413. IWRK = ITAU
  414. CALL CHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
  415. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  416. END IF
  417. *
  418. * If INFO .NE. 0 from CHSEQR, then quit
  419. *
  420. IF( INFO.NE.0 )
  421. $ GO TO 50
  422. *
  423. IF( WANTVL .OR. WANTVR ) THEN
  424. *
  425. * Compute left and/or right eigenvectors
  426. * (CWorkspace: need 2*N, prefer N + 2*N*NB)
  427. * (RWorkspace: need 2*N)
  428. *
  429. IRWORK = IBAL + N
  430. CALL CTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  431. $ N, NOUT, WORK( IWRK ), LWORK-IWRK+1,
  432. $ RWORK( IRWORK ), N, IERR )
  433. END IF
  434. *
  435. IF( WANTVL ) THEN
  436. *
  437. * Undo balancing of left eigenvectors
  438. * (CWorkspace: none)
  439. * (RWorkspace: need N)
  440. *
  441. CALL CGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
  442. $ IERR )
  443. *
  444. * Normalize left eigenvectors and make largest component real
  445. *
  446. DO 20 I = 1, N
  447. SCL = ONE / SCNRM2( N, VL( 1, I ), 1 )
  448. CALL CSSCAL( N, SCL, VL( 1, I ), 1 )
  449. DO 10 K = 1, N
  450. RWORK( IRWORK+K-1 ) = REAL( VL( K, I ) )**2 +
  451. $ AIMAG( VL( K, I ) )**2
  452. 10 CONTINUE
  453. K = ISAMAX( N, RWORK( IRWORK ), 1 )
  454. TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
  455. CALL CSCAL( N, TMP, VL( 1, I ), 1 )
  456. VL( K, I ) = CMPLX( REAL( VL( K, I ) ), ZERO )
  457. 20 CONTINUE
  458. END IF
  459. *
  460. IF( WANTVR ) THEN
  461. *
  462. * Undo balancing of right eigenvectors
  463. * (CWorkspace: none)
  464. * (RWorkspace: need N)
  465. *
  466. CALL CGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
  467. $ IERR )
  468. *
  469. * Normalize right eigenvectors and make largest component real
  470. *
  471. DO 40 I = 1, N
  472. SCL = ONE / SCNRM2( N, VR( 1, I ), 1 )
  473. CALL CSSCAL( N, SCL, VR( 1, I ), 1 )
  474. DO 30 K = 1, N
  475. RWORK( IRWORK+K-1 ) = REAL( VR( K, I ) )**2 +
  476. $ AIMAG( VR( K, I ) )**2
  477. 30 CONTINUE
  478. K = ISAMAX( N, RWORK( IRWORK ), 1 )
  479. TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
  480. CALL CSCAL( N, TMP, VR( 1, I ), 1 )
  481. VR( K, I ) = CMPLX( REAL( VR( K, I ) ), ZERO )
  482. 40 CONTINUE
  483. END IF
  484. *
  485. * Undo scaling if necessary
  486. *
  487. 50 CONTINUE
  488. IF( SCALEA ) THEN
  489. CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
  490. $ MAX( N-INFO, 1 ), IERR )
  491. IF( INFO.GT.0 ) THEN
  492. CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
  493. END IF
  494. END IF
  495. *
  496. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  497. RETURN
  498. *
  499. * End of CGEEV
  500. *
  501. END