You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  61. double m = (double)(M - IS - BK);
  62. double n = (double)(N - IS - BK);
  63. double b = (double)BK;
  64. double a = (double)T;
  65. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  66. }
  67. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  68. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  69. BLASLONG is, min_i;
  70. BLASLONG js, min_j;
  71. BLASLONG jjs, min_jj;
  72. BLASLONG m = args -> m;
  73. BLASLONG n = args -> n;
  74. BLASLONG k = args -> k;
  75. BLASLONG lda = args -> lda;
  76. BLASLONG off = args -> ldb;
  77. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  78. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  79. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  80. FLOAT *sbb = sb;
  81. #if _STDC_VERSION__ >= 201112L
  82. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  83. #else
  84. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  85. #endif
  86. blasint *ipiv = (blasint *)args -> c;
  87. if (range_n) {
  88. n = range_n[1] - range_n[0];
  89. c += range_n[0] * lda * COMPSIZE;
  90. d += range_n[0] * lda * COMPSIZE;
  91. }
  92. if (args -> a == NULL) {
  93. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  94. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  95. } else {
  96. sb = (FLOAT *)args -> a;
  97. }
  98. for (js = 0; js < n; js += REAL_GEMM_R) {
  99. min_j = n - js;
  100. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  101. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  102. min_jj = js + min_j - jjs;
  103. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  104. if (0 && GEMM_UNROLL_N <= 8) {
  105. LASWP_NCOPY(min_jj, off + 1, off + k,
  106. c + (- off + jjs * lda) * COMPSIZE, lda,
  107. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  108. } else {
  109. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  110. #ifdef COMPLEX
  111. ZERO,
  112. #endif
  113. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  114. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  115. }
  116. for (is = 0; is < k; is += GEMM_P) {
  117. min_i = k - is;
  118. if (min_i > GEMM_P) min_i = GEMM_P;
  119. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  120. #ifdef COMPLEX
  121. ZERO,
  122. #endif
  123. sb + k * is * COMPSIZE,
  124. sbb + (jjs - js) * k * COMPSIZE,
  125. c + (is + jjs * lda) * COMPSIZE, lda, is);
  126. }
  127. }
  128. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  129. for (is = 0; is < m; is += GEMM_P){
  130. min_i = m - is;
  131. if (min_i > GEMM_P) min_i = GEMM_P;
  132. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  133. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  134. #ifdef COMPLEX
  135. ZERO,
  136. #endif
  137. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  138. }
  139. }
  140. }
  141. /* Non blocking implementation */
  142. typedef struct {
  143. #if _STDC_VERSION__ >= 201112L
  144. _Atomic
  145. #else
  146. volatile
  147. #endif
  148. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  149. } job_t;
  150. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  151. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  152. #ifndef COMPLEX
  153. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  154. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  155. #else
  156. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  157. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  158. #endif
  159. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  160. job_t *job = (job_t *)args -> common;
  161. BLASLONG xxx, bufferside;
  162. FLOAT *buffer[DIVIDE_RATE];
  163. BLASLONG jjs, min_jj, div_n;
  164. BLASLONG i, current;
  165. BLASLONG is, min_i;
  166. BLASLONG m, n_from, n_to;
  167. BLASLONG k = args -> k;
  168. BLASLONG lda = args -> lda;
  169. BLASLONG off = args -> ldb;
  170. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  171. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  172. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  173. FLOAT *sbb= sb;
  174. blasint *ipiv = (blasint *)args -> c;
  175. #if _STDC_VERSION__ >= 201112L
  176. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  177. #else
  178. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  179. #endif
  180. if (args -> a == NULL) {
  181. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  182. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  183. } else {
  184. sb = (FLOAT *)args -> a;
  185. }
  186. m = range_m[1] - range_m[0];
  187. n_from = range_n[mypos + 0];
  188. n_to = range_n[mypos + 1];
  189. a += range_m[0] * COMPSIZE;
  190. c += range_m[0] * COMPSIZE;
  191. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  192. buffer[0] = sbb;
  193. for (i = 1; i < DIVIDE_RATE; i++) {
  194. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  195. }
  196. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  197. for (i = 0; i < args -> nthreads; i++)
  198. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  199. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  200. min_jj = MIN(n_to, xxx + div_n) - jjs;
  201. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  202. if (0 && GEMM_UNROLL_N <= 8) {
  203. printf("helllo\n");
  204. LASWP_NCOPY(min_jj, off + 1, off + k,
  205. b + (- off + jjs * lda) * COMPSIZE, lda,
  206. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  207. } else {
  208. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  209. #ifdef COMPLEX
  210. ZERO,
  211. #endif
  212. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  213. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  214. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  215. }
  216. for (is = 0; is < k; is += GEMM_P) {
  217. min_i = k - is;
  218. if (min_i > GEMM_P) min_i = GEMM_P;
  219. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  220. #ifdef COMPLEX
  221. ZERO,
  222. #endif
  223. sb + k * is * COMPSIZE,
  224. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  225. b + (is + jjs * lda) * COMPSIZE, lda, is);
  226. }
  227. }
  228. MB;
  229. for (i = 0; i < args -> nthreads; i++)
  230. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  231. }
  232. flag[mypos * CACHE_LINE_SIZE] = 0;
  233. if (m == 0) {
  234. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  235. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  236. }
  237. }
  238. for(is = 0; is < m; is += min_i){
  239. min_i = m - is;
  240. if (min_i >= GEMM_P * 2) {
  241. min_i = GEMM_P;
  242. } else
  243. if (min_i > GEMM_P) {
  244. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  245. }
  246. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  247. current = mypos;
  248. do {
  249. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  250. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  251. if ((current != mypos) && (!is)) {
  252. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  253. }
  254. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  255. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  256. c, lda, is, xxx);
  257. MB;
  258. if (is + min_i >= m) {
  259. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  260. }
  261. }
  262. current ++;
  263. if (current >= args -> nthreads) current = 0;
  264. } while (current != mypos);
  265. }
  266. for (i = 0; i < args -> nthreads; i++) {
  267. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  268. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  269. }
  270. }
  271. return 0;
  272. }
  273. #if 1
  274. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  275. BLASLONG m, n, mn, lda, offset;
  276. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  277. blasint *ipiv, iinfo, info;
  278. int mode;
  279. blas_arg_t newarg;
  280. FLOAT *a, *sbb;
  281. FLOAT dummyalpha[2] = {ZERO, ZERO};
  282. blas_queue_t queue[MAX_CPU_NUMBER];
  283. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  284. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  285. #ifndef USE_ALLOC_HEAP
  286. job_t job[MAX_CPU_NUMBER];
  287. #else
  288. job_t * job=NULL;
  289. #endif
  290. BLASLONG width, nn, mm;
  291. BLASLONG i, j, k, is, bk;
  292. BLASLONG num_cpu;
  293. #ifdef _MSC_VER
  294. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  295. #else
  296. #if _STDC_VERSION__ >= 201112L
  297. _Atomic
  298. #else
  299. volatile
  300. #endif
  301. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  302. #endif
  303. #ifndef COMPLEX
  304. #ifdef XDOUBLE
  305. mode = BLAS_XDOUBLE | BLAS_REAL;
  306. #elif defined(DOUBLE)
  307. mode = BLAS_DOUBLE | BLAS_REAL;
  308. #else
  309. mode = BLAS_SINGLE | BLAS_REAL;
  310. #endif
  311. #else
  312. #ifdef XDOUBLE
  313. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  314. #elif defined(DOUBLE)
  315. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  316. #else
  317. mode = BLAS_SINGLE | BLAS_COMPLEX;
  318. #endif
  319. #endif
  320. m = args -> m;
  321. n = args -> n;
  322. a = (FLOAT *)args -> a;
  323. lda = args -> lda;
  324. ipiv = (blasint *)args -> c;
  325. offset = 0;
  326. if (range_n) {
  327. m -= range_n[0];
  328. n = range_n[1] - range_n[0];
  329. offset = range_n[0];
  330. a += range_n[0] * (lda + 1) * COMPSIZE;
  331. }
  332. if (m <= 0 || n <= 0) return 0;
  333. newarg.c = ipiv;
  334. newarg.lda = lda;
  335. info = 0;
  336. mn = MIN(m, n);
  337. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  338. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  339. if (init_bk <= GEMM_UNROLL_N) {
  340. info = GETF2(args, NULL, range_n, sa, sb, 0);
  341. return info;
  342. }
  343. next_bk = init_bk;
  344. bk = mn;
  345. if (bk > next_bk) bk = next_bk;
  346. range_n_new[0] = offset;
  347. range_n_new[1] = offset + bk;
  348. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  349. if (iinfo && !info) info = iinfo;
  350. #ifdef USE_ALLOC_HEAP
  351. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  352. if(job==NULL){
  353. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  354. exit(1);
  355. }
  356. #endif
  357. newarg.common = (void *)job;
  358. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  359. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  360. is = 0;
  361. num_cpu = 0;
  362. while (is < mn) {
  363. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  364. if (width > mn - is - bk) width = mn - is - bk;
  365. if (width < bk) {
  366. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  367. if (next_bk > bk) next_bk = bk;
  368. width = next_bk;
  369. if (width > mn - is - bk) width = mn - is - bk;
  370. }
  371. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  372. mm = m - bk - is;
  373. nn = n - bk - is;
  374. newarg.a = sb;
  375. newarg.b = a + (is + is * lda) * COMPSIZE;
  376. newarg.d = (void *)flag;
  377. newarg.m = mm;
  378. newarg.n = nn;
  379. newarg.k = bk;
  380. newarg.ldb = is + offset;
  381. nn -= width;
  382. range_n_mine[0] = 0;
  383. range_n_mine[1] = width;
  384. range_N[0] = width;
  385. range_M[0] = 0;
  386. num_cpu = 0;
  387. while (nn > 0){
  388. if (mm >= nn) {
  389. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  390. if (nn < width) width = nn;
  391. nn -= width;
  392. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  393. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  394. if (mm < width) width = mm;
  395. if (nn <= 0) width = mm;
  396. mm -= width;
  397. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  398. } else {
  399. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  400. if (mm < width) width = mm;
  401. mm -= width;
  402. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  403. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  404. if (nn < width) width = nn;
  405. if (mm <= 0) width = nn;
  406. nn -= width;
  407. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  408. }
  409. queue[num_cpu].mode = mode;
  410. queue[num_cpu].routine = inner_advanced_thread;
  411. queue[num_cpu].args = &newarg;
  412. queue[num_cpu].range_m = &range_M[num_cpu];
  413. queue[num_cpu].range_n = &range_N[0];
  414. queue[num_cpu].sa = NULL;
  415. queue[num_cpu].sb = NULL;
  416. queue[num_cpu].next = &queue[num_cpu + 1];
  417. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  418. num_cpu ++;
  419. }
  420. newarg.nthreads = num_cpu;
  421. if (num_cpu > 0) {
  422. for (j = 0; j < num_cpu; j++) {
  423. for (i = 0; i < num_cpu; i++) {
  424. for (k = 0; k < DIVIDE_RATE; k++) {
  425. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  426. }
  427. }
  428. }
  429. }
  430. is += bk;
  431. bk = mn - is;
  432. if (bk > next_bk) bk = next_bk;
  433. range_n_new[0] = offset + is;
  434. range_n_new[1] = offset + is + bk;
  435. if (num_cpu > 0) {
  436. queue[num_cpu - 1].next = NULL;
  437. exec_blas_async(0, &queue[0]);
  438. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  439. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  440. if (iinfo && !info) info = iinfo + is;
  441. for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  442. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  443. } else {
  444. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  445. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  446. if (iinfo && !info) info = iinfo + is;
  447. }
  448. }
  449. next_bk = init_bk;
  450. is = 0;
  451. while (is < mn) {
  452. bk = mn - is;
  453. if (bk > next_bk) bk = next_bk;
  454. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  455. if (width > mn - is - bk) width = mn - is - bk;
  456. if (width < bk) {
  457. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  458. if (next_bk > bk) next_bk = bk;
  459. }
  460. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  461. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  462. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  463. is += bk;
  464. }
  465. #ifdef USE_ALLOC_HEAP
  466. free(job);
  467. #endif
  468. return info;
  469. }
  470. #else
  471. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  472. BLASLONG m, n, mn, lda, offset;
  473. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  474. blasint *ipiv, iinfo, info;
  475. int mode;
  476. blas_arg_t newarg;
  477. FLOAT *a, *sbb;
  478. FLOAT dummyalpha[2] = {ZERO, ZERO};
  479. blas_queue_t queue[MAX_CPU_NUMBER];
  480. BLASLONG range[MAX_CPU_NUMBER + 1];
  481. BLASLONG width, nn, num_cpu;
  482. #if _STDC_VERSION__ >= 201112L
  483. _Atomic
  484. #else
  485. volatile
  486. #endif
  487. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  488. #ifndef COMPLEX
  489. #ifdef XDOUBLE
  490. mode = BLAS_XDOUBLE | BLAS_REAL;
  491. #elif defined(DOUBLE)
  492. mode = BLAS_DOUBLE | BLAS_REAL;
  493. #else
  494. mode = BLAS_SINGLE | BLAS_REAL;
  495. #endif
  496. #else
  497. #ifdef XDOUBLE
  498. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  499. #elif defined(DOUBLE)
  500. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  501. #else
  502. mode = BLAS_SINGLE | BLAS_COMPLEX;
  503. #endif
  504. #endif
  505. m = args -> m;
  506. n = args -> n;
  507. a = (FLOAT *)args -> a;
  508. lda = args -> lda;
  509. ipiv = (blasint *)args -> c;
  510. offset = 0;
  511. if (range_n) {
  512. m -= range_n[0];
  513. n = range_n[1] - range_n[0];
  514. offset = range_n[0];
  515. a += range_n[0] * (lda + 1) * COMPSIZE;
  516. }
  517. if (m <= 0 || n <= 0) return 0;
  518. newarg.c = ipiv;
  519. newarg.lda = lda;
  520. newarg.common = NULL;
  521. newarg.nthreads = args -> nthreads;
  522. mn = MIN(m, n);
  523. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  524. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  525. if (init_bk <= GEMM_UNROLL_N) {
  526. info = GETF2(args, NULL, range_n, sa, sb, 0);
  527. return info;
  528. }
  529. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  530. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  531. if (width > n - init_bk) width = n - init_bk;
  532. if (width < init_bk) {
  533. BLASLONG temp;
  534. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  535. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  536. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  537. if (temp < init_bk) init_bk = temp;
  538. }
  539. next_bk = init_bk;
  540. bk = init_bk;
  541. range_n_new[0] = offset;
  542. range_n_new[1] = offset + bk;
  543. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  544. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  545. is = 0;
  546. num_cpu = 0;
  547. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  548. while (is < mn) {
  549. width = FORMULA1(m, n, is, bk, args -> nthreads);
  550. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  551. if (width < bk) {
  552. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  553. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  554. if (next_bk > bk) next_bk = bk;
  555. #if 0
  556. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  557. #else
  558. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  559. #endif
  560. width = next_bk;
  561. }
  562. if (width > mn - is - bk) {
  563. next_bk = mn - is - bk;
  564. width = next_bk;
  565. }
  566. nn = n - bk - is;
  567. if (width > nn) width = nn;
  568. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  569. range[0] = 0;
  570. range[1] = width;
  571. num_cpu = 1;
  572. nn -= width;
  573. newarg.a = sb;
  574. newarg.b = a + (is + is * lda) * COMPSIZE;
  575. newarg.d = (void *)flag;
  576. newarg.m = m - bk - is;
  577. newarg.n = n - bk - is;
  578. newarg.k = bk;
  579. newarg.ldb = is + offset;
  580. while (nn > 0){
  581. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  582. nn -= width;
  583. if (nn < 0) width = width + nn;
  584. range[num_cpu + 1] = range[num_cpu] + width;
  585. queue[num_cpu].mode = mode;
  586. //queue[num_cpu].routine = inner_advanced_thread;
  587. queue[num_cpu].routine = (void *)inner_basic_thread;
  588. queue[num_cpu].args = &newarg;
  589. queue[num_cpu].range_m = NULL;
  590. queue[num_cpu].range_n = &range[num_cpu];
  591. queue[num_cpu].sa = NULL;
  592. queue[num_cpu].sb = NULL;
  593. queue[num_cpu].next = &queue[num_cpu + 1];
  594. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  595. num_cpu ++;
  596. }
  597. queue[num_cpu - 1].next = NULL;
  598. is += bk;
  599. bk = n - is;
  600. if (bk > next_bk) bk = next_bk;
  601. range_n_new[0] = offset + is;
  602. range_n_new[1] = offset + is + bk;
  603. if (num_cpu > 1) {
  604. exec_blas_async(1, &queue[1]);
  605. #if 0
  606. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  607. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  608. #else
  609. if (range[1] >= bk * 4) {
  610. BLASLONG myrange[2];
  611. myrange[0] = 0;
  612. myrange[1] = bk;
  613. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  614. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  615. myrange[0] = bk;
  616. myrange[1] = range[1];
  617. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  618. } else {
  619. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  620. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  621. }
  622. #endif
  623. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  624. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  625. } else {
  626. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  627. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  628. }
  629. if (iinfo && !info) info = iinfo + is;
  630. }
  631. next_bk = init_bk;
  632. bk = init_bk;
  633. is = 0;
  634. while (is < mn) {
  635. bk = mn - is;
  636. if (bk > next_bk) bk = next_bk;
  637. width = FORMULA1(m, n, is, bk, args -> nthreads);
  638. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  639. if (width < bk) {
  640. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  641. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  642. if (next_bk > bk) next_bk = bk;
  643. #if 0
  644. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  645. #else
  646. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  647. #endif
  648. }
  649. if (width > mn - is - bk) {
  650. next_bk = mn - is - bk;
  651. width = next_bk;
  652. }
  653. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  654. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  655. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  656. is += bk;
  657. }
  658. return info;
  659. }
  660. #endif