You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctbsv.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. *> \brief \b CTBSV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,K,LDA,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * COMPLEX A(LDA,*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> CTBSV solves one of the systems of equations
  28. *>
  29. *> A*x = b, or A**T*x = b, or A**H*x = b,
  30. *>
  31. *> where b and x are n element vectors and A is an n by n unit, or
  32. *> non-unit, upper or lower triangular band matrix, with ( k + 1 )
  33. *> diagonals.
  34. *>
  35. *> No test for singularity or near-singularity is included in this
  36. *> routine. Such tests must be performed before calling this routine.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> On entry, UPLO specifies whether the matrix is an upper or
  46. *> lower triangular matrix as follows:
  47. *>
  48. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  49. *>
  50. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> On entry, TRANS specifies the equations to be solved as
  57. *> follows:
  58. *>
  59. *> TRANS = 'N' or 'n' A*x = b.
  60. *>
  61. *> TRANS = 'T' or 't' A**T*x = b.
  62. *>
  63. *> TRANS = 'C' or 'c' A**H*x = b.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] DIAG
  67. *> \verbatim
  68. *> DIAG is CHARACTER*1
  69. *> On entry, DIAG specifies whether or not A is unit
  70. *> triangular as follows:
  71. *>
  72. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  73. *>
  74. *> DIAG = 'N' or 'n' A is not assumed to be unit
  75. *> triangular.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> On entry, N specifies the order of the matrix A.
  82. *> N must be at least zero.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] K
  86. *> \verbatim
  87. *> K is INTEGER
  88. *> On entry with UPLO = 'U' or 'u', K specifies the number of
  89. *> super-diagonals of the matrix A.
  90. *> On entry with UPLO = 'L' or 'l', K specifies the number of
  91. *> sub-diagonals of the matrix A.
  92. *> K must satisfy 0 .le. K.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] A
  96. *> \verbatim
  97. *> A is COMPLEX array, dimension ( LDA, N )
  98. *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  99. *> by n part of the array A must contain the upper triangular
  100. *> band part of the matrix of coefficients, supplied column by
  101. *> column, with the leading diagonal of the matrix in row
  102. *> ( k + 1 ) of the array, the first super-diagonal starting at
  103. *> position 2 in row k, and so on. The top left k by k triangle
  104. *> of the array A is not referenced.
  105. *> The following program segment will transfer an upper
  106. *> triangular band matrix from conventional full matrix storage
  107. *> to band storage:
  108. *>
  109. *> DO 20, J = 1, N
  110. *> M = K + 1 - J
  111. *> DO 10, I = MAX( 1, J - K ), J
  112. *> A( M + I, J ) = matrix( I, J )
  113. *> 10 CONTINUE
  114. *> 20 CONTINUE
  115. *>
  116. *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  117. *> by n part of the array A must contain the lower triangular
  118. *> band part of the matrix of coefficients, supplied column by
  119. *> column, with the leading diagonal of the matrix in row 1 of
  120. *> the array, the first sub-diagonal starting at position 1 in
  121. *> row 2, and so on. The bottom right k by k triangle of the
  122. *> array A is not referenced.
  123. *> The following program segment will transfer a lower
  124. *> triangular band matrix from conventional full matrix storage
  125. *> to band storage:
  126. *>
  127. *> DO 20, J = 1, N
  128. *> M = 1 - J
  129. *> DO 10, I = J, MIN( N, J + K )
  130. *> A( M + I, J ) = matrix( I, J )
  131. *> 10 CONTINUE
  132. *> 20 CONTINUE
  133. *>
  134. *> Note that when DIAG = 'U' or 'u' the elements of the array A
  135. *> corresponding to the diagonal elements of the matrix are not
  136. *> referenced, but are assumed to be unity.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] LDA
  140. *> \verbatim
  141. *> LDA is INTEGER
  142. *> On entry, LDA specifies the first dimension of A as declared
  143. *> in the calling (sub) program. LDA must be at least
  144. *> ( k + 1 ).
  145. *> \endverbatim
  146. *>
  147. *> \param[in,out] X
  148. *> \verbatim
  149. *> X is COMPLEX array, dimension at least
  150. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  151. *> Before entry, the incremented array X must contain the n
  152. *> element right-hand side vector b. On exit, X is overwritten
  153. *> with the solution vector x.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] INCX
  157. *> \verbatim
  158. *> INCX is INTEGER
  159. *> On entry, INCX specifies the increment for the elements of
  160. *> X. INCX must not be zero.
  161. *> \endverbatim
  162. *
  163. * Authors:
  164. * ========
  165. *
  166. *> \author Univ. of Tennessee
  167. *> \author Univ. of California Berkeley
  168. *> \author Univ. of Colorado Denver
  169. *> \author NAG Ltd.
  170. *
  171. *> \date December 2016
  172. *
  173. *> \ingroup complex_blas_level2
  174. *
  175. *> \par Further Details:
  176. * =====================
  177. *>
  178. *> \verbatim
  179. *>
  180. *> Level 2 Blas routine.
  181. *>
  182. *> -- Written on 22-October-1986.
  183. *> Jack Dongarra, Argonne National Lab.
  184. *> Jeremy Du Croz, Nag Central Office.
  185. *> Sven Hammarling, Nag Central Office.
  186. *> Richard Hanson, Sandia National Labs.
  187. *> \endverbatim
  188. *>
  189. * =====================================================================
  190. SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  191. *
  192. * -- Reference BLAS level2 routine (version 3.7.0) --
  193. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  194. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195. * December 2016
  196. *
  197. * .. Scalar Arguments ..
  198. INTEGER INCX,K,LDA,N
  199. CHARACTER DIAG,TRANS,UPLO
  200. * ..
  201. * .. Array Arguments ..
  202. COMPLEX A(LDA,*),X(*)
  203. * ..
  204. *
  205. * =====================================================================
  206. *
  207. * .. Parameters ..
  208. COMPLEX ZERO
  209. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  210. * ..
  211. * .. Local Scalars ..
  212. COMPLEX TEMP
  213. INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  214. LOGICAL NOCONJ,NOUNIT
  215. * ..
  216. * .. External Functions ..
  217. LOGICAL LSAME
  218. EXTERNAL LSAME
  219. * ..
  220. * .. External Subroutines ..
  221. EXTERNAL XERBLA
  222. * ..
  223. * .. Intrinsic Functions ..
  224. INTRINSIC CONJG,MAX,MIN
  225. * ..
  226. *
  227. * Test the input parameters.
  228. *
  229. INFO = 0
  230. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  231. INFO = 1
  232. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  233. + .NOT.LSAME(TRANS,'C')) THEN
  234. INFO = 2
  235. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  236. INFO = 3
  237. ELSE IF (N.LT.0) THEN
  238. INFO = 4
  239. ELSE IF (K.LT.0) THEN
  240. INFO = 5
  241. ELSE IF (LDA.LT. (K+1)) THEN
  242. INFO = 7
  243. ELSE IF (INCX.EQ.0) THEN
  244. INFO = 9
  245. END IF
  246. IF (INFO.NE.0) THEN
  247. CALL XERBLA('CTBSV ',INFO)
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible.
  252. *
  253. IF (N.EQ.0) RETURN
  254. *
  255. NOCONJ = LSAME(TRANS,'T')
  256. NOUNIT = LSAME(DIAG,'N')
  257. *
  258. * Set up the start point in X if the increment is not unity. This
  259. * will be ( N - 1 )*INCX too small for descending loops.
  260. *
  261. IF (INCX.LE.0) THEN
  262. KX = 1 - (N-1)*INCX
  263. ELSE IF (INCX.NE.1) THEN
  264. KX = 1
  265. END IF
  266. *
  267. * Start the operations. In this version the elements of A are
  268. * accessed by sequentially with one pass through A.
  269. *
  270. IF (LSAME(TRANS,'N')) THEN
  271. *
  272. * Form x := inv( A )*x.
  273. *
  274. IF (LSAME(UPLO,'U')) THEN
  275. KPLUS1 = K + 1
  276. IF (INCX.EQ.1) THEN
  277. DO 20 J = N,1,-1
  278. IF (X(J).NE.ZERO) THEN
  279. L = KPLUS1 - J
  280. IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
  281. TEMP = X(J)
  282. DO 10 I = J - 1,MAX(1,J-K),-1
  283. X(I) = X(I) - TEMP*A(L+I,J)
  284. 10 CONTINUE
  285. END IF
  286. 20 CONTINUE
  287. ELSE
  288. KX = KX + (N-1)*INCX
  289. JX = KX
  290. DO 40 J = N,1,-1
  291. KX = KX - INCX
  292. IF (X(JX).NE.ZERO) THEN
  293. IX = KX
  294. L = KPLUS1 - J
  295. IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
  296. TEMP = X(JX)
  297. DO 30 I = J - 1,MAX(1,J-K),-1
  298. X(IX) = X(IX) - TEMP*A(L+I,J)
  299. IX = IX - INCX
  300. 30 CONTINUE
  301. END IF
  302. JX = JX - INCX
  303. 40 CONTINUE
  304. END IF
  305. ELSE
  306. IF (INCX.EQ.1) THEN
  307. DO 60 J = 1,N
  308. IF (X(J).NE.ZERO) THEN
  309. L = 1 - J
  310. IF (NOUNIT) X(J) = X(J)/A(1,J)
  311. TEMP = X(J)
  312. DO 50 I = J + 1,MIN(N,J+K)
  313. X(I) = X(I) - TEMP*A(L+I,J)
  314. 50 CONTINUE
  315. END IF
  316. 60 CONTINUE
  317. ELSE
  318. JX = KX
  319. DO 80 J = 1,N
  320. KX = KX + INCX
  321. IF (X(JX).NE.ZERO) THEN
  322. IX = KX
  323. L = 1 - J
  324. IF (NOUNIT) X(JX) = X(JX)/A(1,J)
  325. TEMP = X(JX)
  326. DO 70 I = J + 1,MIN(N,J+K)
  327. X(IX) = X(IX) - TEMP*A(L+I,J)
  328. IX = IX + INCX
  329. 70 CONTINUE
  330. END IF
  331. JX = JX + INCX
  332. 80 CONTINUE
  333. END IF
  334. END IF
  335. ELSE
  336. *
  337. * Form x := inv( A**T )*x or x := inv( A**H )*x.
  338. *
  339. IF (LSAME(UPLO,'U')) THEN
  340. KPLUS1 = K + 1
  341. IF (INCX.EQ.1) THEN
  342. DO 110 J = 1,N
  343. TEMP = X(J)
  344. L = KPLUS1 - J
  345. IF (NOCONJ) THEN
  346. DO 90 I = MAX(1,J-K),J - 1
  347. TEMP = TEMP - A(L+I,J)*X(I)
  348. 90 CONTINUE
  349. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  350. ELSE
  351. DO 100 I = MAX(1,J-K),J - 1
  352. TEMP = TEMP - CONJG(A(L+I,J))*X(I)
  353. 100 CONTINUE
  354. IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
  355. END IF
  356. X(J) = TEMP
  357. 110 CONTINUE
  358. ELSE
  359. JX = KX
  360. DO 140 J = 1,N
  361. TEMP = X(JX)
  362. IX = KX
  363. L = KPLUS1 - J
  364. IF (NOCONJ) THEN
  365. DO 120 I = MAX(1,J-K),J - 1
  366. TEMP = TEMP - A(L+I,J)*X(IX)
  367. IX = IX + INCX
  368. 120 CONTINUE
  369. IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
  370. ELSE
  371. DO 130 I = MAX(1,J-K),J - 1
  372. TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
  373. IX = IX + INCX
  374. 130 CONTINUE
  375. IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
  376. END IF
  377. X(JX) = TEMP
  378. JX = JX + INCX
  379. IF (J.GT.K) KX = KX + INCX
  380. 140 CONTINUE
  381. END IF
  382. ELSE
  383. IF (INCX.EQ.1) THEN
  384. DO 170 J = N,1,-1
  385. TEMP = X(J)
  386. L = 1 - J
  387. IF (NOCONJ) THEN
  388. DO 150 I = MIN(N,J+K),J + 1,-1
  389. TEMP = TEMP - A(L+I,J)*X(I)
  390. 150 CONTINUE
  391. IF (NOUNIT) TEMP = TEMP/A(1,J)
  392. ELSE
  393. DO 160 I = MIN(N,J+K),J + 1,-1
  394. TEMP = TEMP - CONJG(A(L+I,J))*X(I)
  395. 160 CONTINUE
  396. IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
  397. END IF
  398. X(J) = TEMP
  399. 170 CONTINUE
  400. ELSE
  401. KX = KX + (N-1)*INCX
  402. JX = KX
  403. DO 200 J = N,1,-1
  404. TEMP = X(JX)
  405. IX = KX
  406. L = 1 - J
  407. IF (NOCONJ) THEN
  408. DO 180 I = MIN(N,J+K),J + 1,-1
  409. TEMP = TEMP - A(L+I,J)*X(IX)
  410. IX = IX - INCX
  411. 180 CONTINUE
  412. IF (NOUNIT) TEMP = TEMP/A(1,J)
  413. ELSE
  414. DO 190 I = MIN(N,J+K),J + 1,-1
  415. TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
  416. IX = IX - INCX
  417. 190 CONTINUE
  418. IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
  419. END IF
  420. X(JX) = TEMP
  421. JX = JX - INCX
  422. IF ((N-J).GE.K) KX = KX - INCX
  423. 200 CONTINUE
  424. END IF
  425. END IF
  426. END IF
  427. *
  428. RETURN
  429. *
  430. * End of CTBSV .
  431. *
  432. END