You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cherk.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. *> \brief \b CHERK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
  12. *
  13. * .. Scalar Arguments ..
  14. * REAL ALPHA,BETA
  15. * INTEGER K,LDA,LDC,N
  16. * CHARACTER TRANS,UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),C(LDC,*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CHERK performs one of the hermitian rank k operations
  29. *>
  30. *> C := alpha*A*A**H + beta*C,
  31. *>
  32. *> or
  33. *>
  34. *> C := alpha*A**H*A + beta*C,
  35. *>
  36. *> where alpha and beta are real scalars, C is an n by n hermitian
  37. *> matrix and A is an n by k matrix in the first case and a k by n
  38. *> matrix in the second case.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> On entry, UPLO specifies whether the upper or lower
  48. *> triangular part of the array C is to be referenced as
  49. *> follows:
  50. *>
  51. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  52. *> is to be referenced.
  53. *>
  54. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  55. *> is to be referenced.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] TRANS
  59. *> \verbatim
  60. *> TRANS is CHARACTER*1
  61. *> On entry, TRANS specifies the operation to be performed as
  62. *> follows:
  63. *>
  64. *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
  65. *>
  66. *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> On entry, N specifies the order of the matrix C. N must be
  73. *> at least zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] K
  77. *> \verbatim
  78. *> K is INTEGER
  79. *> On entry with TRANS = 'N' or 'n', K specifies the number
  80. *> of columns of the matrix A, and on entry with
  81. *> TRANS = 'C' or 'c', K specifies the number of rows of the
  82. *> matrix A. K must be at least zero.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] ALPHA
  86. *> \verbatim
  87. *> ALPHA is REAL
  88. *> On entry, ALPHA specifies the scalar alpha.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is COMPLEX array, dimension ( LDA, ka ), where ka is
  94. *> k when TRANS = 'N' or 'n', and is n otherwise.
  95. *> Before entry with TRANS = 'N' or 'n', the leading n by k
  96. *> part of the array A must contain the matrix A, otherwise
  97. *> the leading k by n part of the array A must contain the
  98. *> matrix A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> On entry, LDA specifies the first dimension of A as declared
  105. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  106. *> then LDA must be at least max( 1, n ), otherwise LDA must
  107. *> be at least max( 1, k ).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] BETA
  111. *> \verbatim
  112. *> BETA is REAL
  113. *> On entry, BETA specifies the scalar beta.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] C
  117. *> \verbatim
  118. *> C is COMPLEX array, dimension ( LDC, N )
  119. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  120. *> upper triangular part of the array C must contain the upper
  121. *> triangular part of the hermitian matrix and the strictly
  122. *> lower triangular part of C is not referenced. On exit, the
  123. *> upper triangular part of the array C is overwritten by the
  124. *> upper triangular part of the updated matrix.
  125. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  126. *> lower triangular part of the array C must contain the lower
  127. *> triangular part of the hermitian matrix and the strictly
  128. *> upper triangular part of C is not referenced. On exit, the
  129. *> lower triangular part of the array C is overwritten by the
  130. *> lower triangular part of the updated matrix.
  131. *> Note that the imaginary parts of the diagonal elements need
  132. *> not be set, they are assumed to be zero, and on exit they
  133. *> are set to zero.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LDC
  137. *> \verbatim
  138. *> LDC is INTEGER
  139. *> On entry, LDC specifies the first dimension of C as declared
  140. *> in the calling (sub) program. LDC must be at least
  141. *> max( 1, n ).
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \date December 2016
  153. *
  154. *> \ingroup complex_blas_level3
  155. *
  156. *> \par Further Details:
  157. * =====================
  158. *>
  159. *> \verbatim
  160. *>
  161. *> Level 3 Blas routine.
  162. *>
  163. *> -- Written on 8-February-1989.
  164. *> Jack Dongarra, Argonne National Laboratory.
  165. *> Iain Duff, AERE Harwell.
  166. *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
  167. *> Sven Hammarling, Numerical Algorithms Group Ltd.
  168. *>
  169. *> -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
  170. *> Ed Anderson, Cray Research Inc.
  171. *> \endverbatim
  172. *>
  173. * =====================================================================
  174. SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
  175. *
  176. * -- Reference BLAS level3 routine (version 3.7.0) --
  177. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  178. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179. * December 2016
  180. *
  181. * .. Scalar Arguments ..
  182. REAL ALPHA,BETA
  183. INTEGER K,LDA,LDC,N
  184. CHARACTER TRANS,UPLO
  185. * ..
  186. * .. Array Arguments ..
  187. COMPLEX A(LDA,*),C(LDC,*)
  188. * ..
  189. *
  190. * =====================================================================
  191. *
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. EXTERNAL LSAME
  195. * ..
  196. * .. External Subroutines ..
  197. EXTERNAL XERBLA
  198. * ..
  199. * .. Intrinsic Functions ..
  200. INTRINSIC CMPLX,CONJG,MAX,REAL
  201. * ..
  202. * .. Local Scalars ..
  203. COMPLEX TEMP
  204. REAL RTEMP
  205. INTEGER I,INFO,J,L,NROWA
  206. LOGICAL UPPER
  207. * ..
  208. * .. Parameters ..
  209. REAL ONE,ZERO
  210. PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
  211. * ..
  212. *
  213. * Test the input parameters.
  214. *
  215. IF (LSAME(TRANS,'N')) THEN
  216. NROWA = N
  217. ELSE
  218. NROWA = K
  219. END IF
  220. UPPER = LSAME(UPLO,'U')
  221. *
  222. INFO = 0
  223. IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
  224. INFO = 1
  225. ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
  226. + (.NOT.LSAME(TRANS,'C'))) THEN
  227. INFO = 2
  228. ELSE IF (N.LT.0) THEN
  229. INFO = 3
  230. ELSE IF (K.LT.0) THEN
  231. INFO = 4
  232. ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
  233. INFO = 7
  234. ELSE IF (LDC.LT.MAX(1,N)) THEN
  235. INFO = 10
  236. END IF
  237. IF (INFO.NE.0) THEN
  238. CALL XERBLA('CHERK ',INFO)
  239. RETURN
  240. END IF
  241. *
  242. * Quick return if possible.
  243. *
  244. IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
  245. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
  246. *
  247. * And when alpha.eq.zero.
  248. *
  249. IF (ALPHA.EQ.ZERO) THEN
  250. IF (UPPER) THEN
  251. IF (BETA.EQ.ZERO) THEN
  252. DO 20 J = 1,N
  253. DO 10 I = 1,J
  254. C(I,J) = ZERO
  255. 10 CONTINUE
  256. 20 CONTINUE
  257. ELSE
  258. DO 40 J = 1,N
  259. DO 30 I = 1,J - 1
  260. C(I,J) = BETA*C(I,J)
  261. 30 CONTINUE
  262. C(J,J) = BETA*REAL(C(J,J))
  263. 40 CONTINUE
  264. END IF
  265. ELSE
  266. IF (BETA.EQ.ZERO) THEN
  267. DO 60 J = 1,N
  268. DO 50 I = J,N
  269. C(I,J) = ZERO
  270. 50 CONTINUE
  271. 60 CONTINUE
  272. ELSE
  273. DO 80 J = 1,N
  274. C(J,J) = BETA*REAL(C(J,J))
  275. DO 70 I = J + 1,N
  276. C(I,J) = BETA*C(I,J)
  277. 70 CONTINUE
  278. 80 CONTINUE
  279. END IF
  280. END IF
  281. RETURN
  282. END IF
  283. *
  284. * Start the operations.
  285. *
  286. IF (LSAME(TRANS,'N')) THEN
  287. *
  288. * Form C := alpha*A*A**H + beta*C.
  289. *
  290. IF (UPPER) THEN
  291. DO 130 J = 1,N
  292. IF (BETA.EQ.ZERO) THEN
  293. DO 90 I = 1,J
  294. C(I,J) = ZERO
  295. 90 CONTINUE
  296. ELSE IF (BETA.NE.ONE) THEN
  297. DO 100 I = 1,J - 1
  298. C(I,J) = BETA*C(I,J)
  299. 100 CONTINUE
  300. C(J,J) = BETA*REAL(C(J,J))
  301. ELSE
  302. C(J,J) = REAL(C(J,J))
  303. END IF
  304. DO 120 L = 1,K
  305. IF (A(J,L).NE.CMPLX(ZERO)) THEN
  306. TEMP = ALPHA*CONJG(A(J,L))
  307. DO 110 I = 1,J - 1
  308. C(I,J) = C(I,J) + TEMP*A(I,L)
  309. 110 CONTINUE
  310. C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L))
  311. END IF
  312. 120 CONTINUE
  313. 130 CONTINUE
  314. ELSE
  315. DO 180 J = 1,N
  316. IF (BETA.EQ.ZERO) THEN
  317. DO 140 I = J,N
  318. C(I,J) = ZERO
  319. 140 CONTINUE
  320. ELSE IF (BETA.NE.ONE) THEN
  321. C(J,J) = BETA*REAL(C(J,J))
  322. DO 150 I = J + 1,N
  323. C(I,J) = BETA*C(I,J)
  324. 150 CONTINUE
  325. ELSE
  326. C(J,J) = REAL(C(J,J))
  327. END IF
  328. DO 170 L = 1,K
  329. IF (A(J,L).NE.CMPLX(ZERO)) THEN
  330. TEMP = ALPHA*CONJG(A(J,L))
  331. C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L))
  332. DO 160 I = J + 1,N
  333. C(I,J) = C(I,J) + TEMP*A(I,L)
  334. 160 CONTINUE
  335. END IF
  336. 170 CONTINUE
  337. 180 CONTINUE
  338. END IF
  339. ELSE
  340. *
  341. * Form C := alpha*A**H*A + beta*C.
  342. *
  343. IF (UPPER) THEN
  344. DO 220 J = 1,N
  345. DO 200 I = 1,J - 1
  346. TEMP = ZERO
  347. DO 190 L = 1,K
  348. TEMP = TEMP + CONJG(A(L,I))*A(L,J)
  349. 190 CONTINUE
  350. IF (BETA.EQ.ZERO) THEN
  351. C(I,J) = ALPHA*TEMP
  352. ELSE
  353. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  354. END IF
  355. 200 CONTINUE
  356. RTEMP = ZERO
  357. DO 210 L = 1,K
  358. RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)
  359. 210 CONTINUE
  360. IF (BETA.EQ.ZERO) THEN
  361. C(J,J) = ALPHA*RTEMP
  362. ELSE
  363. C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
  364. END IF
  365. 220 CONTINUE
  366. ELSE
  367. DO 260 J = 1,N
  368. RTEMP = ZERO
  369. DO 230 L = 1,K
  370. RTEMP = RTEMP + CONJG(A(L,J))*A(L,J)
  371. 230 CONTINUE
  372. IF (BETA.EQ.ZERO) THEN
  373. C(J,J) = ALPHA*RTEMP
  374. ELSE
  375. C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
  376. END IF
  377. DO 250 I = J + 1,N
  378. TEMP = ZERO
  379. DO 240 L = 1,K
  380. TEMP = TEMP + CONJG(A(L,I))*A(L,J)
  381. 240 CONTINUE
  382. IF (BETA.EQ.ZERO) THEN
  383. C(I,J) = ALPHA*TEMP
  384. ELSE
  385. C(I,J) = ALPHA*TEMP + BETA*C(I,J)
  386. END IF
  387. 250 CONTINUE
  388. 260 CONTINUE
  389. END IF
  390. END IF
  391. *
  392. RETURN
  393. *
  394. * End of CHERK .
  395. *
  396. END