You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cher.f 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. *> \brief \b CHER
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
  12. *
  13. * .. Scalar Arguments ..
  14. * REAL ALPHA
  15. * INTEGER INCX,LDA,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX A(LDA,*),X(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> CHER performs the hermitian rank 1 operation
  29. *>
  30. *> A := alpha*x*x**H + A,
  31. *>
  32. *> where alpha is a real scalar, x is an n element vector and A is an
  33. *> n by n hermitian matrix.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the array A is to be referenced as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' Only the upper triangular part of A
  47. *> is to be referenced.
  48. *>
  49. *> UPLO = 'L' or 'l' Only the lower triangular part of A
  50. *> is to be referenced.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ALPHA
  61. *> \verbatim
  62. *> ALPHA is REAL
  63. *> On entry, ALPHA specifies the scalar alpha.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] X
  67. *> \verbatim
  68. *> X is COMPLEX array, dimension at least
  69. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  70. *> Before entry, the incremented array X must contain the n
  71. *> element vector x.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] INCX
  75. *> \verbatim
  76. *> INCX is INTEGER
  77. *> On entry, INCX specifies the increment for the elements of
  78. *> X. INCX must not be zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] A
  82. *> \verbatim
  83. *> A is COMPLEX array, dimension ( LDA, N )
  84. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  85. *> upper triangular part of the array A must contain the upper
  86. *> triangular part of the hermitian matrix and the strictly
  87. *> lower triangular part of A is not referenced. On exit, the
  88. *> upper triangular part of the array A is overwritten by the
  89. *> upper triangular part of the updated matrix.
  90. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  91. *> lower triangular part of the array A must contain the lower
  92. *> triangular part of the hermitian matrix and the strictly
  93. *> upper triangular part of A is not referenced. On exit, the
  94. *> lower triangular part of the array A is overwritten by the
  95. *> lower triangular part of the updated matrix.
  96. *> Note that the imaginary parts of the diagonal elements need
  97. *> not be set, they are assumed to be zero, and on exit they
  98. *> are set to zero.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> On entry, LDA specifies the first dimension of A as declared
  105. *> in the calling (sub) program. LDA must be at least
  106. *> max( 1, n ).
  107. *> \endverbatim
  108. *
  109. * Authors:
  110. * ========
  111. *
  112. *> \author Univ. of Tennessee
  113. *> \author Univ. of California Berkeley
  114. *> \author Univ. of Colorado Denver
  115. *> \author NAG Ltd.
  116. *
  117. *> \date December 2016
  118. *
  119. *> \ingroup complex_blas_level2
  120. *
  121. *> \par Further Details:
  122. * =====================
  123. *>
  124. *> \verbatim
  125. *>
  126. *> Level 2 Blas routine.
  127. *>
  128. *> -- Written on 22-October-1986.
  129. *> Jack Dongarra, Argonne National Lab.
  130. *> Jeremy Du Croz, Nag Central Office.
  131. *> Sven Hammarling, Nag Central Office.
  132. *> Richard Hanson, Sandia National Labs.
  133. *> \endverbatim
  134. *>
  135. * =====================================================================
  136. SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
  137. *
  138. * -- Reference BLAS level2 routine (version 3.7.0) --
  139. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  140. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  141. * December 2016
  142. *
  143. * .. Scalar Arguments ..
  144. REAL ALPHA
  145. INTEGER INCX,LDA,N
  146. CHARACTER UPLO
  147. * ..
  148. * .. Array Arguments ..
  149. COMPLEX A(LDA,*),X(*)
  150. * ..
  151. *
  152. * =====================================================================
  153. *
  154. * .. Parameters ..
  155. COMPLEX ZERO
  156. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  157. * ..
  158. * .. Local Scalars ..
  159. COMPLEX TEMP
  160. INTEGER I,INFO,IX,J,JX,KX
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. EXTERNAL LSAME
  165. * ..
  166. * .. External Subroutines ..
  167. EXTERNAL XERBLA
  168. * ..
  169. * .. Intrinsic Functions ..
  170. INTRINSIC CONJG,MAX,REAL
  171. * ..
  172. *
  173. * Test the input parameters.
  174. *
  175. INFO = 0
  176. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  177. INFO = 1
  178. ELSE IF (N.LT.0) THEN
  179. INFO = 2
  180. ELSE IF (INCX.EQ.0) THEN
  181. INFO = 5
  182. ELSE IF (LDA.LT.MAX(1,N)) THEN
  183. INFO = 7
  184. END IF
  185. IF (INFO.NE.0) THEN
  186. CALL XERBLA('CHER ',INFO)
  187. RETURN
  188. END IF
  189. *
  190. * Quick return if possible.
  191. *
  192. IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
  193. *
  194. * Set the start point in X if the increment is not unity.
  195. *
  196. IF (INCX.LE.0) THEN
  197. KX = 1 - (N-1)*INCX
  198. ELSE IF (INCX.NE.1) THEN
  199. KX = 1
  200. END IF
  201. *
  202. * Start the operations. In this version the elements of A are
  203. * accessed sequentially with one pass through the triangular part
  204. * of A.
  205. *
  206. IF (LSAME(UPLO,'U')) THEN
  207. *
  208. * Form A when A is stored in upper triangle.
  209. *
  210. IF (INCX.EQ.1) THEN
  211. DO 20 J = 1,N
  212. IF (X(J).NE.ZERO) THEN
  213. TEMP = ALPHA*CONJG(X(J))
  214. DO 10 I = 1,J - 1
  215. A(I,J) = A(I,J) + X(I)*TEMP
  216. 10 CONTINUE
  217. A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
  218. ELSE
  219. A(J,J) = REAL(A(J,J))
  220. END IF
  221. 20 CONTINUE
  222. ELSE
  223. JX = KX
  224. DO 40 J = 1,N
  225. IF (X(JX).NE.ZERO) THEN
  226. TEMP = ALPHA*CONJG(X(JX))
  227. IX = KX
  228. DO 30 I = 1,J - 1
  229. A(I,J) = A(I,J) + X(IX)*TEMP
  230. IX = IX + INCX
  231. 30 CONTINUE
  232. A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
  233. ELSE
  234. A(J,J) = REAL(A(J,J))
  235. END IF
  236. JX = JX + INCX
  237. 40 CONTINUE
  238. END IF
  239. ELSE
  240. *
  241. * Form A when A is stored in lower triangle.
  242. *
  243. IF (INCX.EQ.1) THEN
  244. DO 60 J = 1,N
  245. IF (X(J).NE.ZERO) THEN
  246. TEMP = ALPHA*CONJG(X(J))
  247. A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
  248. DO 50 I = J + 1,N
  249. A(I,J) = A(I,J) + X(I)*TEMP
  250. 50 CONTINUE
  251. ELSE
  252. A(J,J) = REAL(A(J,J))
  253. END IF
  254. 60 CONTINUE
  255. ELSE
  256. JX = KX
  257. DO 80 J = 1,N
  258. IF (X(JX).NE.ZERO) THEN
  259. TEMP = ALPHA*CONJG(X(JX))
  260. A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
  261. IX = JX
  262. DO 70 I = J + 1,N
  263. IX = IX + INCX
  264. A(I,J) = A(I,J) + X(IX)*TEMP
  265. 70 CONTINUE
  266. ELSE
  267. A(J,J) = REAL(A(J,J))
  268. END IF
  269. JX = JX + INCX
  270. 80 CONTINUE
  271. END IF
  272. END IF
  273. *
  274. RETURN
  275. *
  276. * End of CHER .
  277. *
  278. END