You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsv.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. *> \brief \b DTRSV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INCX,LDA,N
  15. * CHARACTER DIAG,TRANS,UPLO
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION A(LDA,*),X(*)
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> DTRSV solves one of the systems of equations
  28. *>
  29. *> A*x = b, or A**T*x = b,
  30. *>
  31. *> where b and x are n element vectors and A is an n by n unit, or
  32. *> non-unit, upper or lower triangular matrix.
  33. *>
  34. *> No test for singularity or near-singularity is included in this
  35. *> routine. Such tests must be performed before calling this routine.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> On entry, UPLO specifies whether the matrix is an upper or
  45. *> lower triangular matrix as follows:
  46. *>
  47. *> UPLO = 'U' or 'u' A is an upper triangular matrix.
  48. *>
  49. *> UPLO = 'L' or 'l' A is a lower triangular matrix.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> On entry, TRANS specifies the equations to be solved as
  56. *> follows:
  57. *>
  58. *> TRANS = 'N' or 'n' A*x = b.
  59. *>
  60. *> TRANS = 'T' or 't' A**T*x = b.
  61. *>
  62. *> TRANS = 'C' or 'c' A**T*x = b.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] DIAG
  66. *> \verbatim
  67. *> DIAG is CHARACTER*1
  68. *> On entry, DIAG specifies whether or not A is unit
  69. *> triangular as follows:
  70. *>
  71. *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
  72. *>
  73. *> DIAG = 'N' or 'n' A is not assumed to be unit
  74. *> triangular.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> On entry, N specifies the order of the matrix A.
  81. *> N must be at least zero.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] A
  85. *> \verbatim
  86. *> A is DOUBLE PRECISION array, dimension ( LDA, N )
  87. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  88. *> upper triangular part of the array A must contain the upper
  89. *> triangular matrix and the strictly lower triangular part of
  90. *> A is not referenced.
  91. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  92. *> lower triangular part of the array A must contain the lower
  93. *> triangular matrix and the strictly upper triangular part of
  94. *> A is not referenced.
  95. *> Note that when DIAG = 'U' or 'u', the diagonal elements of
  96. *> A are not referenced either, but are assumed to be unity.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> On entry, LDA specifies the first dimension of A as declared
  103. *> in the calling (sub) program. LDA must be at least
  104. *> max( 1, n ).
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X
  108. *> \verbatim
  109. *> X is DOUBLE PRECISION array, dimension at least
  110. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  111. *> Before entry, the incremented array X must contain the n
  112. *> element right-hand side vector b. On exit, X is overwritten
  113. *> with the solution vector x.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] INCX
  117. *> \verbatim
  118. *> INCX is INTEGER
  119. *> On entry, INCX specifies the increment for the elements of
  120. *> X. INCX must not be zero.
  121. *>
  122. *> Level 2 Blas routine.
  123. *>
  124. *> -- Written on 22-October-1986.
  125. *> Jack Dongarra, Argonne National Lab.
  126. *> Jeremy Du Croz, Nag Central Office.
  127. *> Sven Hammarling, Nag Central Office.
  128. *> Richard Hanson, Sandia National Labs.
  129. *> \endverbatim
  130. *
  131. * Authors:
  132. * ========
  133. *
  134. *> \author Univ. of Tennessee
  135. *> \author Univ. of California Berkeley
  136. *> \author Univ. of Colorado Denver
  137. *> \author NAG Ltd.
  138. *
  139. *> \date December 2016
  140. *
  141. *> \ingroup double_blas_level1
  142. *
  143. * =====================================================================
  144. SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
  145. *
  146. * -- Reference BLAS level1 routine (version 3.7.0) --
  147. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  148. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149. * December 2016
  150. *
  151. * .. Scalar Arguments ..
  152. INTEGER INCX,LDA,N
  153. CHARACTER DIAG,TRANS,UPLO
  154. * ..
  155. * .. Array Arguments ..
  156. DOUBLE PRECISION A(LDA,*),X(*)
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. DOUBLE PRECISION ZERO
  163. PARAMETER (ZERO=0.0D+0)
  164. * ..
  165. * .. Local Scalars ..
  166. DOUBLE PRECISION TEMP
  167. INTEGER I,INFO,IX,J,JX,KX
  168. LOGICAL NOUNIT
  169. * ..
  170. * .. External Functions ..
  171. LOGICAL LSAME
  172. EXTERNAL LSAME
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL XERBLA
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC MAX
  179. * ..
  180. *
  181. * Test the input parameters.
  182. *
  183. INFO = 0
  184. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  185. INFO = 1
  186. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  187. + .NOT.LSAME(TRANS,'C')) THEN
  188. INFO = 2
  189. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  190. INFO = 3
  191. ELSE IF (N.LT.0) THEN
  192. INFO = 4
  193. ELSE IF (LDA.LT.MAX(1,N)) THEN
  194. INFO = 6
  195. ELSE IF (INCX.EQ.0) THEN
  196. INFO = 8
  197. END IF
  198. IF (INFO.NE.0) THEN
  199. CALL XERBLA('DTRSV ',INFO)
  200. RETURN
  201. END IF
  202. *
  203. * Quick return if possible.
  204. *
  205. IF (N.EQ.0) RETURN
  206. *
  207. NOUNIT = LSAME(DIAG,'N')
  208. *
  209. * Set up the start point in X if the increment is not unity. This
  210. * will be ( N - 1 )*INCX too small for descending loops.
  211. *
  212. IF (INCX.LE.0) THEN
  213. KX = 1 - (N-1)*INCX
  214. ELSE IF (INCX.NE.1) THEN
  215. KX = 1
  216. END IF
  217. *
  218. * Start the operations. In this version the elements of A are
  219. * accessed sequentially with one pass through A.
  220. *
  221. IF (LSAME(TRANS,'N')) THEN
  222. *
  223. * Form x := inv( A )*x.
  224. *
  225. IF (LSAME(UPLO,'U')) THEN
  226. IF (INCX.EQ.1) THEN
  227. DO 20 J = N,1,-1
  228. IF (X(J).NE.ZERO) THEN
  229. IF (NOUNIT) X(J) = X(J)/A(J,J)
  230. TEMP = X(J)
  231. DO 10 I = J - 1,1,-1
  232. X(I) = X(I) - TEMP*A(I,J)
  233. 10 CONTINUE
  234. END IF
  235. 20 CONTINUE
  236. ELSE
  237. JX = KX + (N-1)*INCX
  238. DO 40 J = N,1,-1
  239. IF (X(JX).NE.ZERO) THEN
  240. IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  241. TEMP = X(JX)
  242. IX = JX
  243. DO 30 I = J - 1,1,-1
  244. IX = IX - INCX
  245. X(IX) = X(IX) - TEMP*A(I,J)
  246. 30 CONTINUE
  247. END IF
  248. JX = JX - INCX
  249. 40 CONTINUE
  250. END IF
  251. ELSE
  252. IF (INCX.EQ.1) THEN
  253. DO 60 J = 1,N
  254. IF (X(J).NE.ZERO) THEN
  255. IF (NOUNIT) X(J) = X(J)/A(J,J)
  256. TEMP = X(J)
  257. DO 50 I = J + 1,N
  258. X(I) = X(I) - TEMP*A(I,J)
  259. 50 CONTINUE
  260. END IF
  261. 60 CONTINUE
  262. ELSE
  263. JX = KX
  264. DO 80 J = 1,N
  265. IF (X(JX).NE.ZERO) THEN
  266. IF (NOUNIT) X(JX) = X(JX)/A(J,J)
  267. TEMP = X(JX)
  268. IX = JX
  269. DO 70 I = J + 1,N
  270. IX = IX + INCX
  271. X(IX) = X(IX) - TEMP*A(I,J)
  272. 70 CONTINUE
  273. END IF
  274. JX = JX + INCX
  275. 80 CONTINUE
  276. END IF
  277. END IF
  278. ELSE
  279. *
  280. * Form x := inv( A**T )*x.
  281. *
  282. IF (LSAME(UPLO,'U')) THEN
  283. IF (INCX.EQ.1) THEN
  284. DO 100 J = 1,N
  285. TEMP = X(J)
  286. DO 90 I = 1,J - 1
  287. TEMP = TEMP - A(I,J)*X(I)
  288. 90 CONTINUE
  289. IF (NOUNIT) TEMP = TEMP/A(J,J)
  290. X(J) = TEMP
  291. 100 CONTINUE
  292. ELSE
  293. JX = KX
  294. DO 120 J = 1,N
  295. TEMP = X(JX)
  296. IX = KX
  297. DO 110 I = 1,J - 1
  298. TEMP = TEMP - A(I,J)*X(IX)
  299. IX = IX + INCX
  300. 110 CONTINUE
  301. IF (NOUNIT) TEMP = TEMP/A(J,J)
  302. X(JX) = TEMP
  303. JX = JX + INCX
  304. 120 CONTINUE
  305. END IF
  306. ELSE
  307. IF (INCX.EQ.1) THEN
  308. DO 140 J = N,1,-1
  309. TEMP = X(J)
  310. DO 130 I = N,J + 1,-1
  311. TEMP = TEMP - A(I,J)*X(I)
  312. 130 CONTINUE
  313. IF (NOUNIT) TEMP = TEMP/A(J,J)
  314. X(J) = TEMP
  315. 140 CONTINUE
  316. ELSE
  317. KX = KX + (N-1)*INCX
  318. JX = KX
  319. DO 160 J = N,1,-1
  320. TEMP = X(JX)
  321. IX = KX
  322. DO 150 I = N,J + 1,-1
  323. TEMP = TEMP - A(I,J)*X(IX)
  324. IX = IX - INCX
  325. 150 CONTINUE
  326. IF (NOUNIT) TEMP = TEMP/A(J,J)
  327. X(JX) = TEMP
  328. JX = JX - INCX
  329. 160 CONTINUE
  330. END IF
  331. END IF
  332. END IF
  333. *
  334. RETURN
  335. *
  336. * End of DTRSV .
  337. *
  338. END