You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarfb.f 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. *> \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLARFB applies a complex block reflector H or its transpose H**H to a
  40. *> complex M-by-N matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**H from the Left
  50. *> = 'R': apply H or H**H from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'C': apply H**H (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> If SIDE = 'L', M >= K >= 0;
  96. *> if SIDE = 'R', N >= K >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] V
  100. *> \verbatim
  101. *> V is COMPLEX*16 array, dimension
  102. *> (LDV,K) if STOREV = 'C'
  103. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  104. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  105. *> See Further Details.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDV
  109. *> \verbatim
  110. *> LDV is INTEGER
  111. *> The leading dimension of the array V.
  112. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  113. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  114. *> if STOREV = 'R', LDV >= K.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] T
  118. *> \verbatim
  119. *> T is COMPLEX*16 array, dimension (LDT,K)
  120. *> The triangular K-by-K matrix T in the representation of the
  121. *> block reflector.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDT
  125. *> \verbatim
  126. *> LDT is INTEGER
  127. *> The leading dimension of the array T. LDT >= K.
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] C
  131. *> \verbatim
  132. *> C is COMPLEX*16 array, dimension (LDC,N)
  133. *> On entry, the M-by-N matrix C.
  134. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDC
  138. *> \verbatim
  139. *> LDC is INTEGER
  140. *> The leading dimension of the array C. LDC >= max(1,M).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is COMPLEX*16 array, dimension (LDWORK,K)
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDWORK
  149. *> \verbatim
  150. *> LDWORK is INTEGER
  151. *> The leading dimension of the array WORK.
  152. *> If SIDE = 'L', LDWORK >= max(1,N);
  153. *> if SIDE = 'R', LDWORK >= max(1,M).
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \ingroup complex16OTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. *
  202. * .. Scalar Arguments ..
  203. CHARACTER DIRECT, SIDE, STOREV, TRANS
  204. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  205. * ..
  206. * .. Array Arguments ..
  207. COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  208. $ WORK( LDWORK, * )
  209. * ..
  210. *
  211. * =====================================================================
  212. *
  213. * .. Parameters ..
  214. COMPLEX*16 ONE
  215. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  216. * ..
  217. * .. Local Scalars ..
  218. CHARACTER TRANST
  219. INTEGER I, J
  220. * ..
  221. * .. External Functions ..
  222. LOGICAL LSAME
  223. EXTERNAL LSAME
  224. * ..
  225. * .. External Subroutines ..
  226. EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM
  227. * ..
  228. * .. Intrinsic Functions ..
  229. INTRINSIC DCONJG
  230. * ..
  231. * .. Executable Statements ..
  232. *
  233. * Quick return if possible
  234. *
  235. IF( M.LE.0 .OR. N.LE.0 )
  236. $ RETURN
  237. *
  238. IF( LSAME( TRANS, 'N' ) ) THEN
  239. TRANST = 'C'
  240. ELSE
  241. TRANST = 'N'
  242. END IF
  243. *
  244. IF( LSAME( STOREV, 'C' ) ) THEN
  245. *
  246. IF( LSAME( DIRECT, 'F' ) ) THEN
  247. *
  248. * Let V = ( V1 ) (first K rows)
  249. * ( V2 )
  250. * where V1 is unit lower triangular.
  251. *
  252. IF( LSAME( SIDE, 'L' ) ) THEN
  253. *
  254. * Form H * C or H**H * C where C = ( C1 )
  255. * ( C2 )
  256. *
  257. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  258. *
  259. * W := C1**H
  260. *
  261. DO 10 J = 1, K
  262. CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  263. CALL ZLACGV( N, WORK( 1, J ), 1 )
  264. 10 CONTINUE
  265. *
  266. * W := W * V1
  267. *
  268. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  269. $ K, ONE, V, LDV, WORK, LDWORK )
  270. IF( M.GT.K ) THEN
  271. *
  272. * W := W + C2**H * V2
  273. *
  274. CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
  275. $ K, M-K, ONE, C( K+1, 1 ), LDC,
  276. $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
  277. END IF
  278. *
  279. * W := W * T**H or W * T
  280. *
  281. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  282. $ ONE, T, LDT, WORK, LDWORK )
  283. *
  284. * C := C - V * W**H
  285. *
  286. IF( M.GT.K ) THEN
  287. *
  288. * C2 := C2 - V2 * W**H
  289. *
  290. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  291. $ M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
  292. $ LDWORK, ONE, C( K+1, 1 ), LDC )
  293. END IF
  294. *
  295. * W := W * V1**H
  296. *
  297. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  298. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  299. *
  300. * C1 := C1 - W**H
  301. *
  302. DO 30 J = 1, K
  303. DO 20 I = 1, N
  304. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  305. 20 CONTINUE
  306. 30 CONTINUE
  307. *
  308. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  309. *
  310. * Form C * H or C * H**H where C = ( C1 C2 )
  311. *
  312. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  313. *
  314. * W := C1
  315. *
  316. DO 40 J = 1, K
  317. CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  318. 40 CONTINUE
  319. *
  320. * W := W * V1
  321. *
  322. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  323. $ K, ONE, V, LDV, WORK, LDWORK )
  324. IF( N.GT.K ) THEN
  325. *
  326. * W := W + C2 * V2
  327. *
  328. CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
  329. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  330. $ ONE, WORK, LDWORK )
  331. END IF
  332. *
  333. * W := W * T or W * T**H
  334. *
  335. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  336. $ ONE, T, LDT, WORK, LDWORK )
  337. *
  338. * C := C - W * V**H
  339. *
  340. IF( N.GT.K ) THEN
  341. *
  342. * C2 := C2 - W * V2**H
  343. *
  344. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  345. $ N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
  346. $ LDV, ONE, C( 1, K+1 ), LDC )
  347. END IF
  348. *
  349. * W := W * V1**H
  350. *
  351. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  352. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  353. *
  354. * C1 := C1 - W
  355. *
  356. DO 60 J = 1, K
  357. DO 50 I = 1, M
  358. C( I, J ) = C( I, J ) - WORK( I, J )
  359. 50 CONTINUE
  360. 60 CONTINUE
  361. END IF
  362. *
  363. ELSE
  364. *
  365. * Let V = ( V1 )
  366. * ( V2 ) (last K rows)
  367. * where V2 is unit upper triangular.
  368. *
  369. IF( LSAME( SIDE, 'L' ) ) THEN
  370. *
  371. * Form H * C or H**H * C where C = ( C1 )
  372. * ( C2 )
  373. *
  374. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  375. *
  376. * W := C2**H
  377. *
  378. DO 70 J = 1, K
  379. CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  380. CALL ZLACGV( N, WORK( 1, J ), 1 )
  381. 70 CONTINUE
  382. *
  383. * W := W * V2
  384. *
  385. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  386. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  387. IF( M.GT.K ) THEN
  388. *
  389. * W := W + C1**H * V1
  390. *
  391. CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
  392. $ K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
  393. $ LDWORK )
  394. END IF
  395. *
  396. * W := W * T**H or W * T
  397. *
  398. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  399. $ ONE, T, LDT, WORK, LDWORK )
  400. *
  401. * C := C - V * W**H
  402. *
  403. IF( M.GT.K ) THEN
  404. *
  405. * C1 := C1 - V1 * W**H
  406. *
  407. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  408. $ M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
  409. $ ONE, C, LDC )
  410. END IF
  411. *
  412. * W := W * V2**H
  413. *
  414. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  415. $ 'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
  416. $ LDWORK )
  417. *
  418. * C2 := C2 - W**H
  419. *
  420. DO 90 J = 1, K
  421. DO 80 I = 1, N
  422. C( M-K+J, I ) = C( M-K+J, I ) -
  423. $ DCONJG( WORK( I, J ) )
  424. 80 CONTINUE
  425. 90 CONTINUE
  426. *
  427. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  428. *
  429. * Form C * H or C * H**H where C = ( C1 C2 )
  430. *
  431. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  432. *
  433. * W := C2
  434. *
  435. DO 100 J = 1, K
  436. CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  437. 100 CONTINUE
  438. *
  439. * W := W * V2
  440. *
  441. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  442. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  443. IF( N.GT.K ) THEN
  444. *
  445. * W := W + C1 * V1
  446. *
  447. CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
  448. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  449. END IF
  450. *
  451. * W := W * T or W * T**H
  452. *
  453. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  454. $ ONE, T, LDT, WORK, LDWORK )
  455. *
  456. * C := C - W * V**H
  457. *
  458. IF( N.GT.K ) THEN
  459. *
  460. * C1 := C1 - W * V1**H
  461. *
  462. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  463. $ N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
  464. $ C, LDC )
  465. END IF
  466. *
  467. * W := W * V2**H
  468. *
  469. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  470. $ 'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
  471. $ LDWORK )
  472. *
  473. * C2 := C2 - W
  474. *
  475. DO 120 J = 1, K
  476. DO 110 I = 1, M
  477. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  478. 110 CONTINUE
  479. 120 CONTINUE
  480. END IF
  481. END IF
  482. *
  483. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  484. *
  485. IF( LSAME( DIRECT, 'F' ) ) THEN
  486. *
  487. * Let V = ( V1 V2 ) (V1: first K columns)
  488. * where V1 is unit upper triangular.
  489. *
  490. IF( LSAME( SIDE, 'L' ) ) THEN
  491. *
  492. * Form H * C or H**H * C where C = ( C1 )
  493. * ( C2 )
  494. *
  495. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  496. *
  497. * W := C1**H
  498. *
  499. DO 130 J = 1, K
  500. CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  501. CALL ZLACGV( N, WORK( 1, J ), 1 )
  502. 130 CONTINUE
  503. *
  504. * W := W * V1**H
  505. *
  506. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  507. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  508. IF( M.GT.K ) THEN
  509. *
  510. * W := W + C2**H * V2**H
  511. *
  512. CALL ZGEMM( 'Conjugate transpose',
  513. $ 'Conjugate transpose', N, K, M-K, ONE,
  514. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  515. $ WORK, LDWORK )
  516. END IF
  517. *
  518. * W := W * T**H or W * T
  519. *
  520. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  521. $ ONE, T, LDT, WORK, LDWORK )
  522. *
  523. * C := C - V**H * W**H
  524. *
  525. IF( M.GT.K ) THEN
  526. *
  527. * C2 := C2 - V2**H * W**H
  528. *
  529. CALL ZGEMM( 'Conjugate transpose',
  530. $ 'Conjugate transpose', M-K, N, K, -ONE,
  531. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  532. $ C( K+1, 1 ), LDC )
  533. END IF
  534. *
  535. * W := W * V1
  536. *
  537. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  538. $ K, ONE, V, LDV, WORK, LDWORK )
  539. *
  540. * C1 := C1 - W**H
  541. *
  542. DO 150 J = 1, K
  543. DO 140 I = 1, N
  544. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  545. 140 CONTINUE
  546. 150 CONTINUE
  547. *
  548. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  549. *
  550. * Form C * H or C * H**H where C = ( C1 C2 )
  551. *
  552. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  553. *
  554. * W := C1
  555. *
  556. DO 160 J = 1, K
  557. CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  558. 160 CONTINUE
  559. *
  560. * W := W * V1**H
  561. *
  562. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  563. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  564. IF( N.GT.K ) THEN
  565. *
  566. * W := W + C2 * V2**H
  567. *
  568. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  569. $ K, N-K, ONE, C( 1, K+1 ), LDC,
  570. $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
  571. END IF
  572. *
  573. * W := W * T or W * T**H
  574. *
  575. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  576. $ ONE, T, LDT, WORK, LDWORK )
  577. *
  578. * C := C - W * V
  579. *
  580. IF( N.GT.K ) THEN
  581. *
  582. * C2 := C2 - W * V2
  583. *
  584. CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
  585. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  586. $ C( 1, K+1 ), LDC )
  587. END IF
  588. *
  589. * W := W * V1
  590. *
  591. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  592. $ K, ONE, V, LDV, WORK, LDWORK )
  593. *
  594. * C1 := C1 - W
  595. *
  596. DO 180 J = 1, K
  597. DO 170 I = 1, M
  598. C( I, J ) = C( I, J ) - WORK( I, J )
  599. 170 CONTINUE
  600. 180 CONTINUE
  601. *
  602. END IF
  603. *
  604. ELSE
  605. *
  606. * Let V = ( V1 V2 ) (V2: last K columns)
  607. * where V2 is unit lower triangular.
  608. *
  609. IF( LSAME( SIDE, 'L' ) ) THEN
  610. *
  611. * Form H * C or H**H * C where C = ( C1 )
  612. * ( C2 )
  613. *
  614. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  615. *
  616. * W := C2**H
  617. *
  618. DO 190 J = 1, K
  619. CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  620. CALL ZLACGV( N, WORK( 1, J ), 1 )
  621. 190 CONTINUE
  622. *
  623. * W := W * V2**H
  624. *
  625. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  626. $ 'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
  627. $ LDWORK )
  628. IF( M.GT.K ) THEN
  629. *
  630. * W := W + C1**H * V1**H
  631. *
  632. CALL ZGEMM( 'Conjugate transpose',
  633. $ 'Conjugate transpose', N, K, M-K, ONE, C,
  634. $ LDC, V, LDV, ONE, WORK, LDWORK )
  635. END IF
  636. *
  637. * W := W * T**H or W * T
  638. *
  639. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  640. $ ONE, T, LDT, WORK, LDWORK )
  641. *
  642. * C := C - V**H * W**H
  643. *
  644. IF( M.GT.K ) THEN
  645. *
  646. * C1 := C1 - V1**H * W**H
  647. *
  648. CALL ZGEMM( 'Conjugate transpose',
  649. $ 'Conjugate transpose', M-K, N, K, -ONE, V,
  650. $ LDV, WORK, LDWORK, ONE, C, LDC )
  651. END IF
  652. *
  653. * W := W * V2
  654. *
  655. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  656. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  657. *
  658. * C2 := C2 - W**H
  659. *
  660. DO 210 J = 1, K
  661. DO 200 I = 1, N
  662. C( M-K+J, I ) = C( M-K+J, I ) -
  663. $ DCONJG( WORK( I, J ) )
  664. 200 CONTINUE
  665. 210 CONTINUE
  666. *
  667. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  668. *
  669. * Form C * H or C * H**H where C = ( C1 C2 )
  670. *
  671. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  672. *
  673. * W := C2
  674. *
  675. DO 220 J = 1, K
  676. CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  677. 220 CONTINUE
  678. *
  679. * W := W * V2**H
  680. *
  681. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  682. $ 'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
  683. $ LDWORK )
  684. IF( N.GT.K ) THEN
  685. *
  686. * W := W + C1 * V1**H
  687. *
  688. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  689. $ K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
  690. $ LDWORK )
  691. END IF
  692. *
  693. * W := W * T or W * T**H
  694. *
  695. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  696. $ ONE, T, LDT, WORK, LDWORK )
  697. *
  698. * C := C - W * V
  699. *
  700. IF( N.GT.K ) THEN
  701. *
  702. * C1 := C1 - W * V1
  703. *
  704. CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
  705. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  706. END IF
  707. *
  708. * W := W * V2
  709. *
  710. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  711. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  712. *
  713. * C1 := C1 - W
  714. *
  715. DO 240 J = 1, K
  716. DO 230 I = 1, M
  717. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  718. 230 CONTINUE
  719. 240 CONTINUE
  720. *
  721. END IF
  722. *
  723. END IF
  724. END IF
  725. *
  726. RETURN
  727. *
  728. * End of ZLARFB
  729. *
  730. END