You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlansb.f 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. *> \brief \b ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANSB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANSB( NORM, UPLO, N, K, AB, LDAB,
  22. * WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANSB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n symmetric band matrix A, with k super-diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANSB
  45. *> \verbatim
  46. *>
  47. *> ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANSB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the upper or lower triangular part of the
  75. *> band matrix A is supplied.
  76. *> = 'U': Upper triangular part is supplied
  77. *> = 'L': Lower triangular part is supplied
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The order of the matrix A. N >= 0. When N = 0, ZLANSB is
  84. *> set to zero.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] K
  88. *> \verbatim
  89. *> K is INTEGER
  90. *> The number of super-diagonals or sub-diagonals of the
  91. *> band matrix A. K >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] AB
  95. *> \verbatim
  96. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  97. *> The upper or lower triangle of the symmetric band matrix A,
  98. *> stored in the first K+1 rows of AB. The j-th column of A is
  99. *> stored in the j-th column of the array AB as follows:
  100. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  101. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDAB
  105. *> \verbatim
  106. *> LDAB is INTEGER
  107. *> The leading dimension of the array AB. LDAB >= K+1.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  113. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  114. *> WORK is not referenced.
  115. *> \endverbatim
  116. *
  117. * Authors:
  118. * ========
  119. *
  120. *> \author Univ. of Tennessee
  121. *> \author Univ. of California Berkeley
  122. *> \author Univ. of Colorado Denver
  123. *> \author NAG Ltd.
  124. *
  125. *> \ingroup complex16OTHERauxiliary
  126. *
  127. * =====================================================================
  128. DOUBLE PRECISION FUNCTION ZLANSB( NORM, UPLO, N, K, AB, LDAB,
  129. $ WORK )
  130. *
  131. * -- LAPACK auxiliary routine --
  132. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  133. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134. *
  135. * .. Scalar Arguments ..
  136. CHARACTER NORM, UPLO
  137. INTEGER K, LDAB, N
  138. * ..
  139. * .. Array Arguments ..
  140. DOUBLE PRECISION WORK( * )
  141. COMPLEX*16 AB( LDAB, * )
  142. * ..
  143. *
  144. * =====================================================================
  145. *
  146. * .. Parameters ..
  147. DOUBLE PRECISION ONE, ZERO
  148. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  149. * ..
  150. * .. Local Scalars ..
  151. INTEGER I, J, L
  152. DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME, DISNAN
  156. EXTERNAL LSAME, DISNAN
  157. * ..
  158. * .. External Subroutines ..
  159. EXTERNAL ZLASSQ
  160. * ..
  161. * .. Intrinsic Functions ..
  162. INTRINSIC ABS, MAX, MIN, SQRT
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. IF( N.EQ.0 ) THEN
  167. VALUE = ZERO
  168. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  169. *
  170. * Find max(abs(A(i,j))).
  171. *
  172. VALUE = ZERO
  173. IF( LSAME( UPLO, 'U' ) ) THEN
  174. DO 20 J = 1, N
  175. DO 10 I = MAX( K+2-J, 1 ), K + 1
  176. SUM = ABS( AB( I, J ) )
  177. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  178. 10 CONTINUE
  179. 20 CONTINUE
  180. ELSE
  181. DO 40 J = 1, N
  182. DO 30 I = 1, MIN( N+1-J, K+1 )
  183. SUM = ABS( AB( I, J ) )
  184. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  185. 30 CONTINUE
  186. 40 CONTINUE
  187. END IF
  188. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  189. $ ( NORM.EQ.'1' ) ) THEN
  190. *
  191. * Find normI(A) ( = norm1(A), since A is symmetric).
  192. *
  193. VALUE = ZERO
  194. IF( LSAME( UPLO, 'U' ) ) THEN
  195. DO 60 J = 1, N
  196. SUM = ZERO
  197. L = K + 1 - J
  198. DO 50 I = MAX( 1, J-K ), J - 1
  199. ABSA = ABS( AB( L+I, J ) )
  200. SUM = SUM + ABSA
  201. WORK( I ) = WORK( I ) + ABSA
  202. 50 CONTINUE
  203. WORK( J ) = SUM + ABS( AB( K+1, J ) )
  204. 60 CONTINUE
  205. DO 70 I = 1, N
  206. SUM = WORK( I )
  207. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  208. 70 CONTINUE
  209. ELSE
  210. DO 80 I = 1, N
  211. WORK( I ) = ZERO
  212. 80 CONTINUE
  213. DO 100 J = 1, N
  214. SUM = WORK( J ) + ABS( AB( 1, J ) )
  215. L = 1 - J
  216. DO 90 I = J + 1, MIN( N, J+K )
  217. ABSA = ABS( AB( L+I, J ) )
  218. SUM = SUM + ABSA
  219. WORK( I ) = WORK( I ) + ABSA
  220. 90 CONTINUE
  221. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  222. 100 CONTINUE
  223. END IF
  224. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  225. *
  226. * Find normF(A).
  227. *
  228. SCALE = ZERO
  229. SUM = ONE
  230. IF( K.GT.0 ) THEN
  231. IF( LSAME( UPLO, 'U' ) ) THEN
  232. DO 110 J = 2, N
  233. CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
  234. $ 1, SCALE, SUM )
  235. 110 CONTINUE
  236. L = K + 1
  237. ELSE
  238. DO 120 J = 1, N - 1
  239. CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
  240. $ SUM )
  241. 120 CONTINUE
  242. L = 1
  243. END IF
  244. SUM = 2*SUM
  245. ELSE
  246. L = 1
  247. END IF
  248. CALL ZLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM )
  249. VALUE = SCALE*SQRT( SUM )
  250. END IF
  251. *
  252. ZLANSB = VALUE
  253. RETURN
  254. *
  255. * End of ZLANSB
  256. *
  257. END