You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stfttr.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. *> \brief \b STFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download STFTTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stfttr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stfttr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stfttr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> STFTTR copies a triangular matrix A from rectangular full packed
  38. *> format (TF) to standard full format (TR).
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF is in Normal format;
  48. *> = 'T': ARF is in Transpose format.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrices ARF and A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] ARF
  65. *> \verbatim
  66. *> ARF is REAL array, dimension (N*(N+1)/2).
  67. *> On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
  68. *> matrix A in RFP format. See the "Notes" below for more
  69. *> details.
  70. *> \endverbatim
  71. *>
  72. *> \param[out] A
  73. *> \verbatim
  74. *> A is REAL array, dimension (LDA,N)
  75. *> On exit, the triangular matrix A. If UPLO = 'U', the
  76. *> leading N-by-N upper triangular part of the array A contains
  77. *> the upper triangular matrix, and the strictly lower
  78. *> triangular part of A is not referenced. If UPLO = 'L', the
  79. *> leading N-by-N lower triangular part of the array A contains
  80. *> the lower triangular matrix, and the strictly upper
  81. *> triangular part of A is not referenced.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] INFO
  91. *> \verbatim
  92. *> INFO is INTEGER
  93. *> = 0: successful exit
  94. *> < 0: if INFO = -i, the i-th argument had an illegal value
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup realOTHERcomputational
  106. *
  107. *> \par Further Details:
  108. * =====================
  109. *>
  110. *> \verbatim
  111. *>
  112. *> We first consider Rectangular Full Packed (RFP) Format when N is
  113. *> even. We give an example where N = 6.
  114. *>
  115. *> AP is Upper AP is Lower
  116. *>
  117. *> 00 01 02 03 04 05 00
  118. *> 11 12 13 14 15 10 11
  119. *> 22 23 24 25 20 21 22
  120. *> 33 34 35 30 31 32 33
  121. *> 44 45 40 41 42 43 44
  122. *> 55 50 51 52 53 54 55
  123. *>
  124. *>
  125. *> Let TRANSR = 'N'. RFP holds AP as follows:
  126. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  127. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  128. *> the transpose of the first three columns of AP upper.
  129. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  130. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  131. *> the transpose of the last three columns of AP lower.
  132. *> This covers the case N even and TRANSR = 'N'.
  133. *>
  134. *> RFP A RFP A
  135. *>
  136. *> 03 04 05 33 43 53
  137. *> 13 14 15 00 44 54
  138. *> 23 24 25 10 11 55
  139. *> 33 34 35 20 21 22
  140. *> 00 44 45 30 31 32
  141. *> 01 11 55 40 41 42
  142. *> 02 12 22 50 51 52
  143. *>
  144. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  145. *> transpose of RFP A above. One therefore gets:
  146. *>
  147. *>
  148. *> RFP A RFP A
  149. *>
  150. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  151. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  152. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  153. *>
  154. *>
  155. *> We then consider Rectangular Full Packed (RFP) Format when N is
  156. *> odd. We give an example where N = 5.
  157. *>
  158. *> AP is Upper AP is Lower
  159. *>
  160. *> 00 01 02 03 04 00
  161. *> 11 12 13 14 10 11
  162. *> 22 23 24 20 21 22
  163. *> 33 34 30 31 32 33
  164. *> 44 40 41 42 43 44
  165. *>
  166. *>
  167. *> Let TRANSR = 'N'. RFP holds AP as follows:
  168. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  169. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  170. *> the transpose of the first two columns of AP upper.
  171. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  172. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  173. *> the transpose of the last two columns of AP lower.
  174. *> This covers the case N odd and TRANSR = 'N'.
  175. *>
  176. *> RFP A RFP A
  177. *>
  178. *> 02 03 04 00 33 43
  179. *> 12 13 14 10 11 44
  180. *> 22 23 24 20 21 22
  181. *> 00 33 34 30 31 32
  182. *> 01 11 44 40 41 42
  183. *>
  184. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  185. *> transpose of RFP A above. One therefore gets:
  186. *>
  187. *> RFP A RFP A
  188. *>
  189. *> 02 12 22 00 01 00 10 20 30 40 50
  190. *> 03 13 23 33 11 33 11 21 31 41 51
  191. *> 04 14 24 34 44 43 44 22 32 42 52
  192. *> \endverbatim
  193. *
  194. * =====================================================================
  195. SUBROUTINE STFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  196. *
  197. * -- LAPACK computational routine --
  198. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  199. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  200. *
  201. * .. Scalar Arguments ..
  202. CHARACTER TRANSR, UPLO
  203. INTEGER INFO, N, LDA
  204. * ..
  205. * .. Array Arguments ..
  206. REAL A( 0: LDA-1, 0: * ), ARF( 0: * )
  207. * ..
  208. *
  209. * =====================================================================
  210. *
  211. * ..
  212. * .. Local Scalars ..
  213. LOGICAL LOWER, NISODD, NORMALTRANSR
  214. INTEGER N1, N2, K, NT, NX2, NP1X2
  215. INTEGER I, J, L, IJ
  216. * ..
  217. * .. External Functions ..
  218. LOGICAL LSAME
  219. EXTERNAL LSAME
  220. * ..
  221. * .. External Subroutines ..
  222. EXTERNAL XERBLA
  223. * ..
  224. * .. Intrinsic Functions ..
  225. INTRINSIC MAX, MOD
  226. * ..
  227. * .. Executable Statements ..
  228. *
  229. * Test the input parameters.
  230. *
  231. INFO = 0
  232. NORMALTRANSR = LSAME( TRANSR, 'N' )
  233. LOWER = LSAME( UPLO, 'L' )
  234. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  235. INFO = -1
  236. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  237. INFO = -2
  238. ELSE IF( N.LT.0 ) THEN
  239. INFO = -3
  240. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  241. INFO = -6
  242. END IF
  243. IF( INFO.NE.0 ) THEN
  244. CALL XERBLA( 'STFTTR', -INFO )
  245. RETURN
  246. END IF
  247. *
  248. * Quick return if possible
  249. *
  250. IF( N.LE.1 ) THEN
  251. IF( N.EQ.1 ) THEN
  252. A( 0, 0 ) = ARF( 0 )
  253. END IF
  254. RETURN
  255. END IF
  256. *
  257. * Size of array ARF(0:nt-1)
  258. *
  259. NT = N*( N+1 ) / 2
  260. *
  261. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  262. *
  263. IF( LOWER ) THEN
  264. N2 = N / 2
  265. N1 = N - N2
  266. ELSE
  267. N1 = N / 2
  268. N2 = N - N1
  269. END IF
  270. *
  271. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  272. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  273. * N--by--(N+1)/2.
  274. *
  275. IF( MOD( N, 2 ).EQ.0 ) THEN
  276. K = N / 2
  277. NISODD = .FALSE.
  278. IF( .NOT.LOWER )
  279. $ NP1X2 = N + N + 2
  280. ELSE
  281. NISODD = .TRUE.
  282. IF( .NOT.LOWER )
  283. $ NX2 = N + N
  284. END IF
  285. *
  286. IF( NISODD ) THEN
  287. *
  288. * N is odd
  289. *
  290. IF( NORMALTRANSR ) THEN
  291. *
  292. * N is odd and TRANSR = 'N'
  293. *
  294. IF( LOWER ) THEN
  295. *
  296. * N is odd, TRANSR = 'N', and UPLO = 'L'
  297. *
  298. IJ = 0
  299. DO J = 0, N2
  300. DO I = N1, N2 + J
  301. A( N2+J, I ) = ARF( IJ )
  302. IJ = IJ + 1
  303. END DO
  304. DO I = J, N - 1
  305. A( I, J ) = ARF( IJ )
  306. IJ = IJ + 1
  307. END DO
  308. END DO
  309. *
  310. ELSE
  311. *
  312. * N is odd, TRANSR = 'N', and UPLO = 'U'
  313. *
  314. IJ = NT - N
  315. DO J = N - 1, N1, -1
  316. DO I = 0, J
  317. A( I, J ) = ARF( IJ )
  318. IJ = IJ + 1
  319. END DO
  320. DO L = J - N1, N1 - 1
  321. A( J-N1, L ) = ARF( IJ )
  322. IJ = IJ + 1
  323. END DO
  324. IJ = IJ - NX2
  325. END DO
  326. *
  327. END IF
  328. *
  329. ELSE
  330. *
  331. * N is odd and TRANSR = 'T'
  332. *
  333. IF( LOWER ) THEN
  334. *
  335. * N is odd, TRANSR = 'T', and UPLO = 'L'
  336. *
  337. IJ = 0
  338. DO J = 0, N2 - 1
  339. DO I = 0, J
  340. A( J, I ) = ARF( IJ )
  341. IJ = IJ + 1
  342. END DO
  343. DO I = N1 + J, N - 1
  344. A( I, N1+J ) = ARF( IJ )
  345. IJ = IJ + 1
  346. END DO
  347. END DO
  348. DO J = N2, N - 1
  349. DO I = 0, N1 - 1
  350. A( J, I ) = ARF( IJ )
  351. IJ = IJ + 1
  352. END DO
  353. END DO
  354. *
  355. ELSE
  356. *
  357. * N is odd, TRANSR = 'T', and UPLO = 'U'
  358. *
  359. IJ = 0
  360. DO J = 0, N1
  361. DO I = N1, N - 1
  362. A( J, I ) = ARF( IJ )
  363. IJ = IJ + 1
  364. END DO
  365. END DO
  366. DO J = 0, N1 - 1
  367. DO I = 0, J
  368. A( I, J ) = ARF( IJ )
  369. IJ = IJ + 1
  370. END DO
  371. DO L = N2 + J, N - 1
  372. A( N2+J, L ) = ARF( IJ )
  373. IJ = IJ + 1
  374. END DO
  375. END DO
  376. *
  377. END IF
  378. *
  379. END IF
  380. *
  381. ELSE
  382. *
  383. * N is even
  384. *
  385. IF( NORMALTRANSR ) THEN
  386. *
  387. * N is even and TRANSR = 'N'
  388. *
  389. IF( LOWER ) THEN
  390. *
  391. * N is even, TRANSR = 'N', and UPLO = 'L'
  392. *
  393. IJ = 0
  394. DO J = 0, K - 1
  395. DO I = K, K + J
  396. A( K+J, I ) = ARF( IJ )
  397. IJ = IJ + 1
  398. END DO
  399. DO I = J, N - 1
  400. A( I, J ) = ARF( IJ )
  401. IJ = IJ + 1
  402. END DO
  403. END DO
  404. *
  405. ELSE
  406. *
  407. * N is even, TRANSR = 'N', and UPLO = 'U'
  408. *
  409. IJ = NT - N - 1
  410. DO J = N - 1, K, -1
  411. DO I = 0, J
  412. A( I, J ) = ARF( IJ )
  413. IJ = IJ + 1
  414. END DO
  415. DO L = J - K, K - 1
  416. A( J-K, L ) = ARF( IJ )
  417. IJ = IJ + 1
  418. END DO
  419. IJ = IJ - NP1X2
  420. END DO
  421. *
  422. END IF
  423. *
  424. ELSE
  425. *
  426. * N is even and TRANSR = 'T'
  427. *
  428. IF( LOWER ) THEN
  429. *
  430. * N is even, TRANSR = 'T', and UPLO = 'L'
  431. *
  432. IJ = 0
  433. J = K
  434. DO I = K, N - 1
  435. A( I, J ) = ARF( IJ )
  436. IJ = IJ + 1
  437. END DO
  438. DO J = 0, K - 2
  439. DO I = 0, J
  440. A( J, I ) = ARF( IJ )
  441. IJ = IJ + 1
  442. END DO
  443. DO I = K + 1 + J, N - 1
  444. A( I, K+1+J ) = ARF( IJ )
  445. IJ = IJ + 1
  446. END DO
  447. END DO
  448. DO J = K - 1, N - 1
  449. DO I = 0, K - 1
  450. A( J, I ) = ARF( IJ )
  451. IJ = IJ + 1
  452. END DO
  453. END DO
  454. *
  455. ELSE
  456. *
  457. * N is even, TRANSR = 'T', and UPLO = 'U'
  458. *
  459. IJ = 0
  460. DO J = 0, K
  461. DO I = K, N - 1
  462. A( J, I ) = ARF( IJ )
  463. IJ = IJ + 1
  464. END DO
  465. END DO
  466. DO J = 0, K - 2
  467. DO I = 0, J
  468. A( I, J ) = ARF( IJ )
  469. IJ = IJ + 1
  470. END DO
  471. DO L = K + 1 + J, N - 1
  472. A( K+1+J, L ) = ARF( IJ )
  473. IJ = IJ + 1
  474. END DO
  475. END DO
  476. * Note that here, on exit of the loop, J = K-1
  477. DO I = 0, J
  478. A( I, J ) = ARF( IJ )
  479. IJ = IJ + 1
  480. END DO
  481. *
  482. END IF
  483. *
  484. END IF
  485. *
  486. END IF
  487. *
  488. RETURN
  489. *
  490. * End of STFTTR
  491. *
  492. END