You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyevx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. *> \brief <b> SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  22. * ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
  23. * IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
  28. * REAL ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> SSYEVX computes selected eigenvalues and, optionally, eigenvectors
  42. *> of a real symmetric matrix A. Eigenvalues and eigenvectors can be
  43. *> selected by specifying either a range of values or a range of indices
  44. *> for the desired eigenvalues.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] JOBZ
  51. *> \verbatim
  52. *> JOBZ is CHARACTER*1
  53. *> = 'N': Compute eigenvalues only;
  54. *> = 'V': Compute eigenvalues and eigenvectors.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] RANGE
  58. *> \verbatim
  59. *> RANGE is CHARACTER*1
  60. *> = 'A': all eigenvalues will be found.
  61. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  62. *> will be found.
  63. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] UPLO
  67. *> \verbatim
  68. *> UPLO is CHARACTER*1
  69. *> = 'U': Upper triangle of A is stored;
  70. *> = 'L': Lower triangle of A is stored.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] N
  74. *> \verbatim
  75. *> N is INTEGER
  76. *> The order of the matrix A. N >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in,out] A
  80. *> \verbatim
  81. *> A is REAL array, dimension (LDA, N)
  82. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  83. *> leading N-by-N upper triangular part of A contains the
  84. *> upper triangular part of the matrix A. If UPLO = 'L',
  85. *> the leading N-by-N lower triangular part of A contains
  86. *> the lower triangular part of the matrix A.
  87. *> On exit, the lower triangle (if UPLO='L') or the upper
  88. *> triangle (if UPLO='U') of A, including the diagonal, is
  89. *> destroyed.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDA
  93. *> \verbatim
  94. *> LDA is INTEGER
  95. *> The leading dimension of the array A. LDA >= max(1,N).
  96. *> \endverbatim
  97. *>
  98. *> \param[in] VL
  99. *> \verbatim
  100. *> VL is REAL
  101. *> If RANGE='V', the lower bound of the interval to
  102. *> be searched for eigenvalues. VL < VU.
  103. *> Not referenced if RANGE = 'A' or 'I'.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] VU
  107. *> \verbatim
  108. *> VU is REAL
  109. *> If RANGE='V', the upper bound of the interval to
  110. *> be searched for eigenvalues. VL < VU.
  111. *> Not referenced if RANGE = 'A' or 'I'.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IL
  115. *> \verbatim
  116. *> IL is INTEGER
  117. *> If RANGE='I', the index of the
  118. *> smallest eigenvalue to be returned.
  119. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  120. *> Not referenced if RANGE = 'A' or 'V'.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] IU
  124. *> \verbatim
  125. *> IU is INTEGER
  126. *> If RANGE='I', the index of the
  127. *> largest eigenvalue to be returned.
  128. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  129. *> Not referenced if RANGE = 'A' or 'V'.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] ABSTOL
  133. *> \verbatim
  134. *> ABSTOL is REAL
  135. *> The absolute error tolerance for the eigenvalues.
  136. *> An approximate eigenvalue is accepted as converged
  137. *> when it is determined to lie in an interval [a,b]
  138. *> of width less than or equal to
  139. *>
  140. *> ABSTOL + EPS * max( |a|,|b| ) ,
  141. *>
  142. *> where EPS is the machine precision. If ABSTOL is less than
  143. *> or equal to zero, then EPS*|T| will be used in its place,
  144. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  145. *> by reducing A to tridiagonal form.
  146. *>
  147. *> Eigenvalues will be computed most accurately when ABSTOL is
  148. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  149. *> If this routine returns with INFO>0, indicating that some
  150. *> eigenvectors did not converge, try setting ABSTOL to
  151. *> 2*SLAMCH('S').
  152. *>
  153. *> See "Computing Small Singular Values of Bidiagonal Matrices
  154. *> with Guaranteed High Relative Accuracy," by Demmel and
  155. *> Kahan, LAPACK Working Note #3.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] M
  159. *> \verbatim
  160. *> M is INTEGER
  161. *> The total number of eigenvalues found. 0 <= M <= N.
  162. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  163. *> \endverbatim
  164. *>
  165. *> \param[out] W
  166. *> \verbatim
  167. *> W is REAL array, dimension (N)
  168. *> On normal exit, the first M elements contain the selected
  169. *> eigenvalues in ascending order.
  170. *> \endverbatim
  171. *>
  172. *> \param[out] Z
  173. *> \verbatim
  174. *> Z is REAL array, dimension (LDZ, max(1,M))
  175. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  176. *> contain the orthonormal eigenvectors of the matrix A
  177. *> corresponding to the selected eigenvalues, with the i-th
  178. *> column of Z holding the eigenvector associated with W(i).
  179. *> If an eigenvector fails to converge, then that column of Z
  180. *> contains the latest approximation to the eigenvector, and the
  181. *> index of the eigenvector is returned in IFAIL.
  182. *> If JOBZ = 'N', then Z is not referenced.
  183. *> Note: the user must ensure that at least max(1,M) columns are
  184. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  185. *> is not known in advance and an upper bound must be used.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LDZ
  189. *> \verbatim
  190. *> LDZ is INTEGER
  191. *> The leading dimension of the array Z. LDZ >= 1, and if
  192. *> JOBZ = 'V', LDZ >= max(1,N).
  193. *> \endverbatim
  194. *>
  195. *> \param[out] WORK
  196. *> \verbatim
  197. *> WORK is REAL array, dimension (MAX(1,LWORK))
  198. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  199. *> \endverbatim
  200. *>
  201. *> \param[in] LWORK
  202. *> \verbatim
  203. *> LWORK is INTEGER
  204. *> The length of the array WORK. LWORK >= 1, when N <= 1;
  205. *> otherwise 8*N.
  206. *> For optimal efficiency, LWORK >= (NB+3)*N,
  207. *> where NB is the max of the blocksize for SSYTRD and SORMTR
  208. *> returned by ILAENV.
  209. *>
  210. *> If LWORK = -1, then a workspace query is assumed; the routine
  211. *> only calculates the optimal size of the WORK array, returns
  212. *> this value as the first entry of the WORK array, and no error
  213. *> message related to LWORK is issued by XERBLA.
  214. *> \endverbatim
  215. *>
  216. *> \param[out] IWORK
  217. *> \verbatim
  218. *> IWORK is INTEGER array, dimension (5*N)
  219. *> \endverbatim
  220. *>
  221. *> \param[out] IFAIL
  222. *> \verbatim
  223. *> IFAIL is INTEGER array, dimension (N)
  224. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  225. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  226. *> indices of the eigenvectors that failed to converge.
  227. *> If JOBZ = 'N', then IFAIL is not referenced.
  228. *> \endverbatim
  229. *>
  230. *> \param[out] INFO
  231. *> \verbatim
  232. *> INFO is INTEGER
  233. *> = 0: successful exit
  234. *> < 0: if INFO = -i, the i-th argument had an illegal value
  235. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  236. *> Their indices are stored in array IFAIL.
  237. *> \endverbatim
  238. *
  239. * Authors:
  240. * ========
  241. *
  242. *> \author Univ. of Tennessee
  243. *> \author Univ. of California Berkeley
  244. *> \author Univ. of Colorado Denver
  245. *> \author NAG Ltd.
  246. *
  247. *> \ingroup realSYeigen
  248. *
  249. * =====================================================================
  250. SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  251. $ ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
  252. $ IFAIL, INFO )
  253. *
  254. * -- LAPACK driver routine --
  255. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  256. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  257. *
  258. * .. Scalar Arguments ..
  259. CHARACTER JOBZ, RANGE, UPLO
  260. INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
  261. REAL ABSTOL, VL, VU
  262. * ..
  263. * .. Array Arguments ..
  264. INTEGER IFAIL( * ), IWORK( * )
  265. REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
  266. * ..
  267. *
  268. * =====================================================================
  269. *
  270. * .. Parameters ..
  271. REAL ZERO, ONE
  272. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  273. * ..
  274. * .. Local Scalars ..
  275. LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  276. $ WANTZ
  277. CHARACTER ORDER
  278. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  279. $ INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
  280. $ ITMP1, J, JJ, LLWORK, LLWRKN, LWKMIN,
  281. $ LWKOPT, NB, NSPLIT
  282. REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  283. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  284. * ..
  285. * .. External Functions ..
  286. LOGICAL LSAME
  287. INTEGER ILAENV
  288. REAL SLAMCH, SLANSY
  289. EXTERNAL LSAME, ILAENV, SLAMCH, SLANSY
  290. * ..
  291. * .. External Subroutines ..
  292. EXTERNAL SCOPY, SLACPY, SORGTR, SORMTR, SSCAL, SSTEBZ,
  293. $ SSTEIN, SSTEQR, SSTERF, SSWAP, SSYTRD, XERBLA
  294. * ..
  295. * .. Intrinsic Functions ..
  296. INTRINSIC MAX, MIN, SQRT
  297. * ..
  298. * .. Executable Statements ..
  299. *
  300. * Test the input parameters.
  301. *
  302. LOWER = LSAME( UPLO, 'L' )
  303. WANTZ = LSAME( JOBZ, 'V' )
  304. ALLEIG = LSAME( RANGE, 'A' )
  305. VALEIG = LSAME( RANGE, 'V' )
  306. INDEIG = LSAME( RANGE, 'I' )
  307. LQUERY = ( LWORK.EQ.-1 )
  308. *
  309. INFO = 0
  310. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  311. INFO = -1
  312. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  313. INFO = -2
  314. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  315. INFO = -3
  316. ELSE IF( N.LT.0 ) THEN
  317. INFO = -4
  318. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  319. INFO = -6
  320. ELSE
  321. IF( VALEIG ) THEN
  322. IF( N.GT.0 .AND. VU.LE.VL )
  323. $ INFO = -8
  324. ELSE IF( INDEIG ) THEN
  325. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  326. INFO = -9
  327. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  328. INFO = -10
  329. END IF
  330. END IF
  331. END IF
  332. IF( INFO.EQ.0 ) THEN
  333. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  334. INFO = -15
  335. END IF
  336. END IF
  337. *
  338. IF( INFO.EQ.0 ) THEN
  339. IF( N.LE.1 ) THEN
  340. LWKMIN = 1
  341. WORK( 1 ) = LWKMIN
  342. ELSE
  343. LWKMIN = 8*N
  344. NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
  345. NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
  346. LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
  347. WORK( 1 ) = LWKOPT
  348. END IF
  349. *
  350. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  351. $ INFO = -17
  352. END IF
  353. *
  354. IF( INFO.NE.0 ) THEN
  355. CALL XERBLA( 'SSYEVX', -INFO )
  356. RETURN
  357. ELSE IF( LQUERY ) THEN
  358. RETURN
  359. END IF
  360. *
  361. * Quick return if possible
  362. *
  363. M = 0
  364. IF( N.EQ.0 ) THEN
  365. RETURN
  366. END IF
  367. *
  368. IF( N.EQ.1 ) THEN
  369. IF( ALLEIG .OR. INDEIG ) THEN
  370. M = 1
  371. W( 1 ) = A( 1, 1 )
  372. ELSE
  373. IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
  374. M = 1
  375. W( 1 ) = A( 1, 1 )
  376. END IF
  377. END IF
  378. IF( WANTZ )
  379. $ Z( 1, 1 ) = ONE
  380. RETURN
  381. END IF
  382. *
  383. * Get machine constants.
  384. *
  385. SAFMIN = SLAMCH( 'Safe minimum' )
  386. EPS = SLAMCH( 'Precision' )
  387. SMLNUM = SAFMIN / EPS
  388. BIGNUM = ONE / SMLNUM
  389. RMIN = SQRT( SMLNUM )
  390. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  391. *
  392. * Scale matrix to allowable range, if necessary.
  393. *
  394. ISCALE = 0
  395. ABSTLL = ABSTOL
  396. IF( VALEIG ) THEN
  397. VLL = VL
  398. VUU = VU
  399. END IF
  400. ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
  401. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  402. ISCALE = 1
  403. SIGMA = RMIN / ANRM
  404. ELSE IF( ANRM.GT.RMAX ) THEN
  405. ISCALE = 1
  406. SIGMA = RMAX / ANRM
  407. END IF
  408. IF( ISCALE.EQ.1 ) THEN
  409. IF( LOWER ) THEN
  410. DO 10 J = 1, N
  411. CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  412. 10 CONTINUE
  413. ELSE
  414. DO 20 J = 1, N
  415. CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
  416. 20 CONTINUE
  417. END IF
  418. IF( ABSTOL.GT.0 )
  419. $ ABSTLL = ABSTOL*SIGMA
  420. IF( VALEIG ) THEN
  421. VLL = VL*SIGMA
  422. VUU = VU*SIGMA
  423. END IF
  424. END IF
  425. *
  426. * Call SSYTRD to reduce symmetric matrix to tridiagonal form.
  427. *
  428. INDTAU = 1
  429. INDE = INDTAU + N
  430. INDD = INDE + N
  431. INDWRK = INDD + N
  432. LLWORK = LWORK - INDWRK + 1
  433. CALL SSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
  434. $ WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  435. *
  436. * If all eigenvalues are desired and ABSTOL is less than or equal to
  437. * zero, then call SSTERF or SORGTR and SSTEQR. If this fails for
  438. * some eigenvalue, then try SSTEBZ.
  439. *
  440. TEST = .FALSE.
  441. IF( INDEIG ) THEN
  442. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  443. TEST = .TRUE.
  444. END IF
  445. END IF
  446. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  447. CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
  448. INDEE = INDWRK + 2*N
  449. IF( .NOT.WANTZ ) THEN
  450. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  451. CALL SSTERF( N, W, WORK( INDEE ), INFO )
  452. ELSE
  453. CALL SLACPY( 'A', N, N, A, LDA, Z, LDZ )
  454. CALL SORGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  455. $ WORK( INDWRK ), LLWORK, IINFO )
  456. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  457. CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  458. $ WORK( INDWRK ), INFO )
  459. IF( INFO.EQ.0 ) THEN
  460. DO 30 I = 1, N
  461. IFAIL( I ) = 0
  462. 30 CONTINUE
  463. END IF
  464. END IF
  465. IF( INFO.EQ.0 ) THEN
  466. M = N
  467. GO TO 40
  468. END IF
  469. INFO = 0
  470. END IF
  471. *
  472. * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
  473. *
  474. IF( WANTZ ) THEN
  475. ORDER = 'B'
  476. ELSE
  477. ORDER = 'E'
  478. END IF
  479. INDIBL = 1
  480. INDISP = INDIBL + N
  481. INDIWO = INDISP + N
  482. CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  483. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  484. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  485. $ IWORK( INDIWO ), INFO )
  486. *
  487. IF( WANTZ ) THEN
  488. CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  489. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  490. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  491. *
  492. * Apply orthogonal matrix used in reduction to tridiagonal
  493. * form to eigenvectors returned by SSTEIN.
  494. *
  495. INDWKN = INDE
  496. LLWRKN = LWORK - INDWKN + 1
  497. CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  498. $ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  499. END IF
  500. *
  501. * If matrix was scaled, then rescale eigenvalues appropriately.
  502. *
  503. 40 CONTINUE
  504. IF( ISCALE.EQ.1 ) THEN
  505. IF( INFO.EQ.0 ) THEN
  506. IMAX = M
  507. ELSE
  508. IMAX = INFO - 1
  509. END IF
  510. CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
  511. END IF
  512. *
  513. * If eigenvalues are not in order, then sort them, along with
  514. * eigenvectors.
  515. *
  516. IF( WANTZ ) THEN
  517. DO 60 J = 1, M - 1
  518. I = 0
  519. TMP1 = W( J )
  520. DO 50 JJ = J + 1, M
  521. IF( W( JJ ).LT.TMP1 ) THEN
  522. I = JJ
  523. TMP1 = W( JJ )
  524. END IF
  525. 50 CONTINUE
  526. *
  527. IF( I.NE.0 ) THEN
  528. ITMP1 = IWORK( INDIBL+I-1 )
  529. W( I ) = W( J )
  530. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  531. W( J ) = TMP1
  532. IWORK( INDIBL+J-1 ) = ITMP1
  533. CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  534. IF( INFO.NE.0 ) THEN
  535. ITMP1 = IFAIL( I )
  536. IFAIL( I ) = IFAIL( J )
  537. IFAIL( J ) = ITMP1
  538. END IF
  539. END IF
  540. 60 CONTINUE
  541. END IF
  542. *
  543. * Set WORK(1) to optimal workspace size.
  544. *
  545. WORK( 1 ) = LWKOPT
  546. *
  547. RETURN
  548. *
  549. * End of SSYEVX
  550. *
  551. END