You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssptri.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. *> \brief \b SSPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * REAL AP( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSPTRI computes the inverse of a real symmetric indefinite matrix
  39. *> A in packed storage using the factorization A = U*D*U**T or
  40. *> A = L*D*L**T computed by SSPTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] AP
  62. *> \verbatim
  63. *> AP is REAL array, dimension (N*(N+1)/2)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by SSPTRF,
  66. *> stored as a packed triangular matrix.
  67. *>
  68. *> On exit, if INFO = 0, the (symmetric) inverse of the original
  69. *> matrix, stored as a packed triangular matrix. The j-th column
  70. *> of inv(A) is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L',
  73. *> AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] IPIV
  77. *> \verbatim
  78. *> IPIV is INTEGER array, dimension (N)
  79. *> Details of the interchanges and the block structure of D
  80. *> as determined by SSPTRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] WORK
  84. *> \verbatim
  85. *> WORK is REAL array, dimension (N)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] INFO
  89. *> \verbatim
  90. *> INFO is INTEGER
  91. *> = 0: successful exit
  92. *> < 0: if INFO = -i, the i-th argument had an illegal value
  93. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  94. *> inverse could not be computed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup realOTHERcomputational
  106. *
  107. * =====================================================================
  108. SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  109. *
  110. * -- LAPACK computational routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER UPLO
  116. INTEGER INFO, N
  117. * ..
  118. * .. Array Arguments ..
  119. INTEGER IPIV( * )
  120. REAL AP( * ), WORK( * )
  121. * ..
  122. *
  123. * =====================================================================
  124. *
  125. * .. Parameters ..
  126. REAL ONE, ZERO
  127. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  128. * ..
  129. * .. Local Scalars ..
  130. LOGICAL UPPER
  131. INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  132. REAL AK, AKKP1, AKP1, D, T, TEMP
  133. * ..
  134. * .. External Functions ..
  135. LOGICAL LSAME
  136. REAL SDOT
  137. EXTERNAL LSAME, SDOT
  138. * ..
  139. * .. External Subroutines ..
  140. EXTERNAL SCOPY, SSPMV, SSWAP, XERBLA
  141. * ..
  142. * .. Intrinsic Functions ..
  143. INTRINSIC ABS
  144. * ..
  145. * .. Executable Statements ..
  146. *
  147. * Test the input parameters.
  148. *
  149. INFO = 0
  150. UPPER = LSAME( UPLO, 'U' )
  151. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  152. INFO = -1
  153. ELSE IF( N.LT.0 ) THEN
  154. INFO = -2
  155. END IF
  156. IF( INFO.NE.0 ) THEN
  157. CALL XERBLA( 'SSPTRI', -INFO )
  158. RETURN
  159. END IF
  160. *
  161. * Quick return if possible
  162. *
  163. IF( N.EQ.0 )
  164. $ RETURN
  165. *
  166. * Check that the diagonal matrix D is nonsingular.
  167. *
  168. IF( UPPER ) THEN
  169. *
  170. * Upper triangular storage: examine D from bottom to top
  171. *
  172. KP = N*( N+1 ) / 2
  173. DO 10 INFO = N, 1, -1
  174. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  175. $ RETURN
  176. KP = KP - INFO
  177. 10 CONTINUE
  178. ELSE
  179. *
  180. * Lower triangular storage: examine D from top to bottom.
  181. *
  182. KP = 1
  183. DO 20 INFO = 1, N
  184. IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  185. $ RETURN
  186. KP = KP + N - INFO + 1
  187. 20 CONTINUE
  188. END IF
  189. INFO = 0
  190. *
  191. IF( UPPER ) THEN
  192. *
  193. * Compute inv(A) from the factorization A = U*D*U**T.
  194. *
  195. * K is the main loop index, increasing from 1 to N in steps of
  196. * 1 or 2, depending on the size of the diagonal blocks.
  197. *
  198. K = 1
  199. KC = 1
  200. 30 CONTINUE
  201. *
  202. * If K > N, exit from loop.
  203. *
  204. IF( K.GT.N )
  205. $ GO TO 50
  206. *
  207. KCNEXT = KC + K
  208. IF( IPIV( K ).GT.0 ) THEN
  209. *
  210. * 1 x 1 diagonal block
  211. *
  212. * Invert the diagonal block.
  213. *
  214. AP( KC+K-1 ) = ONE / AP( KC+K-1 )
  215. *
  216. * Compute column K of the inverse.
  217. *
  218. IF( K.GT.1 ) THEN
  219. CALL SCOPY( K-1, AP( KC ), 1, WORK, 1 )
  220. CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  221. $ 1 )
  222. AP( KC+K-1 ) = AP( KC+K-1 ) -
  223. $ SDOT( K-1, WORK, 1, AP( KC ), 1 )
  224. END IF
  225. KSTEP = 1
  226. ELSE
  227. *
  228. * 2 x 2 diagonal block
  229. *
  230. * Invert the diagonal block.
  231. *
  232. T = ABS( AP( KCNEXT+K-1 ) )
  233. AK = AP( KC+K-1 ) / T
  234. AKP1 = AP( KCNEXT+K ) / T
  235. AKKP1 = AP( KCNEXT+K-1 ) / T
  236. D = T*( AK*AKP1-ONE )
  237. AP( KC+K-1 ) = AKP1 / D
  238. AP( KCNEXT+K ) = AK / D
  239. AP( KCNEXT+K-1 ) = -AKKP1 / D
  240. *
  241. * Compute columns K and K+1 of the inverse.
  242. *
  243. IF( K.GT.1 ) THEN
  244. CALL SCOPY( K-1, AP( KC ), 1, WORK, 1 )
  245. CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
  246. $ 1 )
  247. AP( KC+K-1 ) = AP( KC+K-1 ) -
  248. $ SDOT( K-1, WORK, 1, AP( KC ), 1 )
  249. AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  250. $ SDOT( K-1, AP( KC ), 1, AP( KCNEXT ),
  251. $ 1 )
  252. CALL SCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  253. CALL SSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
  254. $ AP( KCNEXT ), 1 )
  255. AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  256. $ SDOT( K-1, WORK, 1, AP( KCNEXT ), 1 )
  257. END IF
  258. KSTEP = 2
  259. KCNEXT = KCNEXT + K + 1
  260. END IF
  261. *
  262. KP = ABS( IPIV( K ) )
  263. IF( KP.NE.K ) THEN
  264. *
  265. * Interchange rows and columns K and KP in the leading
  266. * submatrix A(1:k+1,1:k+1)
  267. *
  268. KPC = ( KP-1 )*KP / 2 + 1
  269. CALL SSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  270. KX = KPC + KP - 1
  271. DO 40 J = KP + 1, K - 1
  272. KX = KX + J - 1
  273. TEMP = AP( KC+J-1 )
  274. AP( KC+J-1 ) = AP( KX )
  275. AP( KX ) = TEMP
  276. 40 CONTINUE
  277. TEMP = AP( KC+K-1 )
  278. AP( KC+K-1 ) = AP( KPC+KP-1 )
  279. AP( KPC+KP-1 ) = TEMP
  280. IF( KSTEP.EQ.2 ) THEN
  281. TEMP = AP( KC+K+K-1 )
  282. AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  283. AP( KC+K+KP-1 ) = TEMP
  284. END IF
  285. END IF
  286. *
  287. K = K + KSTEP
  288. KC = KCNEXT
  289. GO TO 30
  290. 50 CONTINUE
  291. *
  292. ELSE
  293. *
  294. * Compute inv(A) from the factorization A = L*D*L**T.
  295. *
  296. * K is the main loop index, increasing from 1 to N in steps of
  297. * 1 or 2, depending on the size of the diagonal blocks.
  298. *
  299. NPP = N*( N+1 ) / 2
  300. K = N
  301. KC = NPP
  302. 60 CONTINUE
  303. *
  304. * If K < 1, exit from loop.
  305. *
  306. IF( K.LT.1 )
  307. $ GO TO 80
  308. *
  309. KCNEXT = KC - ( N-K+2 )
  310. IF( IPIV( K ).GT.0 ) THEN
  311. *
  312. * 1 x 1 diagonal block
  313. *
  314. * Invert the diagonal block.
  315. *
  316. AP( KC ) = ONE / AP( KC )
  317. *
  318. * Compute column K of the inverse.
  319. *
  320. IF( K.LT.N ) THEN
  321. CALL SCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  322. CALL SSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
  323. $ ZERO, AP( KC+1 ), 1 )
  324. AP( KC ) = AP( KC ) - SDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
  325. END IF
  326. KSTEP = 1
  327. ELSE
  328. *
  329. * 2 x 2 diagonal block
  330. *
  331. * Invert the diagonal block.
  332. *
  333. T = ABS( AP( KCNEXT+1 ) )
  334. AK = AP( KCNEXT ) / T
  335. AKP1 = AP( KC ) / T
  336. AKKP1 = AP( KCNEXT+1 ) / T
  337. D = T*( AK*AKP1-ONE )
  338. AP( KCNEXT ) = AKP1 / D
  339. AP( KC ) = AK / D
  340. AP( KCNEXT+1 ) = -AKKP1 / D
  341. *
  342. * Compute columns K-1 and K of the inverse.
  343. *
  344. IF( K.LT.N ) THEN
  345. CALL SCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  346. CALL SSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  347. $ ZERO, AP( KC+1 ), 1 )
  348. AP( KC ) = AP( KC ) - SDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
  349. AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  350. $ SDOT( N-K, AP( KC+1 ), 1,
  351. $ AP( KCNEXT+2 ), 1 )
  352. CALL SCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  353. CALL SSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
  354. $ ZERO, AP( KCNEXT+2 ), 1 )
  355. AP( KCNEXT ) = AP( KCNEXT ) -
  356. $ SDOT( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
  357. END IF
  358. KSTEP = 2
  359. KCNEXT = KCNEXT - ( N-K+3 )
  360. END IF
  361. *
  362. KP = ABS( IPIV( K ) )
  363. IF( KP.NE.K ) THEN
  364. *
  365. * Interchange rows and columns K and KP in the trailing
  366. * submatrix A(k-1:n,k-1:n)
  367. *
  368. KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  369. IF( KP.LT.N )
  370. $ CALL SSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  371. KX = KC + KP - K
  372. DO 70 J = K + 1, KP - 1
  373. KX = KX + N - J + 1
  374. TEMP = AP( KC+J-K )
  375. AP( KC+J-K ) = AP( KX )
  376. AP( KX ) = TEMP
  377. 70 CONTINUE
  378. TEMP = AP( KC )
  379. AP( KC ) = AP( KPC )
  380. AP( KPC ) = TEMP
  381. IF( KSTEP.EQ.2 ) THEN
  382. TEMP = AP( KC-N+K-1 )
  383. AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  384. AP( KC-N+KP-1 ) = TEMP
  385. END IF
  386. END IF
  387. *
  388. K = K - KSTEP
  389. KC = KCNEXT
  390. GO TO 60
  391. 80 CONTINUE
  392. END IF
  393. *
  394. RETURN
  395. *
  396. * End of SSPTRI
  397. *
  398. END