You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgesvdq.f 58 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386
  1. *> \brief <b> SGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGESVDQ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvdq.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvdq.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvdq.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
  22. * S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
  23. * WORK, LWORK, RWORK, LRWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * IMPLICIT NONE
  27. * CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
  28. * INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK,
  29. * INFO
  30. * ..
  31. * .. Array Arguments ..
  32. * REAL A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
  33. * REAL S( * ), RWORK( * )
  34. * INTEGER IWORK( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SGESVDQ computes the singular value decomposition (SVD) of a real
  44. *> M-by-N matrix A, where M >= N. The SVD of A is written as
  45. *> [++] [xx] [x0] [xx]
  46. *> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
  47. *> [++] [xx]
  48. *> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
  49. *> matrix, and V is an N-by-N orthogonal matrix. The diagonal elements
  50. *> of SIGMA are the singular values of A. The columns of U and V are the
  51. *> left and the right singular vectors of A, respectively.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] JOBA
  58. *> \verbatim
  59. *> JOBA is CHARACTER*1
  60. *> Specifies the level of accuracy in the computed SVD
  61. *> = 'A' The requested accuracy corresponds to having the backward
  62. *> error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F,
  63. *> where EPS = SLAMCH('Epsilon'). This authorises CGESVDQ to
  64. *> truncate the computed triangular factor in a rank revealing
  65. *> QR factorization whenever the truncated part is below the
  66. *> threshold of the order of EPS * ||A||_F. This is aggressive
  67. *> truncation level.
  68. *> = 'M' Similarly as with 'A', but the truncation is more gentle: it
  69. *> is allowed only when there is a drop on the diagonal of the
  70. *> triangular factor in the QR factorization. This is medium
  71. *> truncation level.
  72. *> = 'H' High accuracy requested. No numerical rank determination based
  73. *> on the rank revealing QR factorization is attempted.
  74. *> = 'E' Same as 'H', and in addition the condition number of column
  75. *> scaled A is estimated and returned in RWORK(1).
  76. *> N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1)
  77. *> \endverbatim
  78. *>
  79. *> \param[in] JOBP
  80. *> \verbatim
  81. *> JOBP is CHARACTER*1
  82. *> = 'P' The rows of A are ordered in decreasing order with respect to
  83. *> ||A(i,:)||_\infty. This enhances numerical accuracy at the cost
  84. *> of extra data movement. Recommended for numerical robustness.
  85. *> = 'N' No row pivoting.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] JOBR
  89. *> \verbatim
  90. *> JOBR is CHARACTER*1
  91. *> = 'T' After the initial pivoted QR factorization, SGESVD is applied to
  92. *> the transposed R**T of the computed triangular factor R. This involves
  93. *> some extra data movement (matrix transpositions). Useful for
  94. *> experiments, research and development.
  95. *> = 'N' The triangular factor R is given as input to SGESVD. This may be
  96. *> preferred as it involves less data movement.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] JOBU
  100. *> \verbatim
  101. *> JOBU is CHARACTER*1
  102. *> = 'A' All M left singular vectors are computed and returned in the
  103. *> matrix U. See the description of U.
  104. *> = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
  105. *> in the matrix U. See the description of U.
  106. *> = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
  107. *> vectors are computed and returned in the matrix U.
  108. *> = 'F' The N left singular vectors are returned in factored form as the
  109. *> product of the Q factor from the initial QR factorization and the
  110. *> N left singular vectors of (R**T , 0)**T. If row pivoting is used,
  111. *> then the necessary information on the row pivoting is stored in
  112. *> IWORK(N+1:N+M-1).
  113. *> = 'N' The left singular vectors are not computed.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] JOBV
  117. *> \verbatim
  118. *> JOBV is CHARACTER*1
  119. *> = 'A', 'V' All N right singular vectors are computed and returned in
  120. *> the matrix V.
  121. *> = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
  122. *> vectors are computed and returned in the matrix V. This option is
  123. *> allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
  124. *> = 'N' The right singular vectors are not computed.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] M
  128. *> \verbatim
  129. *> M is INTEGER
  130. *> The number of rows of the input matrix A. M >= 0.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] N
  134. *> \verbatim
  135. *> N is INTEGER
  136. *> The number of columns of the input matrix A. M >= N >= 0.
  137. *> \endverbatim
  138. *>
  139. *> \param[in,out] A
  140. *> \verbatim
  141. *> A is REAL array of dimensions LDA x N
  142. *> On entry, the input matrix A.
  143. *> On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains
  144. *> the Householder vectors as stored by SGEQP3. If JOBU = 'F', these Householder
  145. *> vectors together with WORK(1:N) can be used to restore the Q factors from
  146. *> the initial pivoted QR factorization of A. See the description of U.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LDA
  150. *> \verbatim
  151. *> LDA is INTEGER.
  152. *> The leading dimension of the array A. LDA >= max(1,M).
  153. *> \endverbatim
  154. *>
  155. *> \param[out] S
  156. *> \verbatim
  157. *> S is REAL array of dimension N.
  158. *> The singular values of A, ordered so that S(i) >= S(i+1).
  159. *> \endverbatim
  160. *>
  161. *> \param[out] U
  162. *> \verbatim
  163. *> U is REAL array, dimension
  164. *> LDU x M if JOBU = 'A'; see the description of LDU. In this case,
  165. *> on exit, U contains the M left singular vectors.
  166. *> LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
  167. *> case, U contains the leading N or the leading NUMRANK left singular vectors.
  168. *> LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
  169. *> contains N x N orthogonal matrix that can be used to form the left
  170. *> singular vectors.
  171. *> If JOBU = 'N', U is not referenced.
  172. *> \endverbatim
  173. *>
  174. *> \param[in] LDU
  175. *> \verbatim
  176. *> LDU is INTEGER.
  177. *> The leading dimension of the array U.
  178. *> If JOBU = 'A', 'S', 'U', 'R', LDU >= max(1,M).
  179. *> If JOBU = 'F', LDU >= max(1,N).
  180. *> Otherwise, LDU >= 1.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] V
  184. *> \verbatim
  185. *> V is REAL array, dimension
  186. *> LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' .
  187. *> If JOBV = 'A', or 'V', V contains the N-by-N orthogonal matrix V**T;
  188. *> If JOBV = 'R', V contains the first NUMRANK rows of V**T (the right
  189. *> singular vectors, stored rowwise, of the NUMRANK largest singular values).
  190. *> If JOBV = 'N' and JOBA = 'E', V is used as a workspace.
  191. *> If JOBV = 'N', and JOBA.NE.'E', V is not referenced.
  192. *> \endverbatim
  193. *>
  194. *> \param[in] LDV
  195. *> \verbatim
  196. *> LDV is INTEGER
  197. *> The leading dimension of the array V.
  198. *> If JOBV = 'A', 'V', 'R', or JOBA = 'E', LDV >= max(1,N).
  199. *> Otherwise, LDV >= 1.
  200. *> \endverbatim
  201. *>
  202. *> \param[out] NUMRANK
  203. *> \verbatim
  204. *> NUMRANK is INTEGER
  205. *> NUMRANK is the numerical rank first determined after the rank
  206. *> revealing QR factorization, following the strategy specified by the
  207. *> value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
  208. *> leading singular values and vectors are then requested in the call
  209. *> of SGESVD. The final value of NUMRANK might be further reduced if
  210. *> some singular values are computed as zeros.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] IWORK
  214. *> \verbatim
  215. *> IWORK is INTEGER array, dimension (max(1, LIWORK)).
  216. *> On exit, IWORK(1:N) contains column pivoting permutation of the
  217. *> rank revealing QR factorization.
  218. *> If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
  219. *> of row swaps used in row pivoting. These can be used to restore the
  220. *> left singular vectors in the case JOBU = 'F'.
  221. *>
  222. *> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
  223. *> IWORK(1) returns the minimal LIWORK.
  224. *> \endverbatim
  225. *>
  226. *> \param[in] LIWORK
  227. *> \verbatim
  228. *> LIWORK is INTEGER
  229. *> The dimension of the array IWORK.
  230. *> LIWORK >= N + M - 1, if JOBP = 'P' and JOBA .NE. 'E';
  231. *> LIWORK >= N if JOBP = 'N' and JOBA .NE. 'E';
  232. *> LIWORK >= N + M - 1 + N, if JOBP = 'P' and JOBA = 'E';
  233. *> LIWORK >= N + N if JOBP = 'N' and JOBA = 'E'.
  234. *>
  235. *> If LIWORK = -1, then a workspace query is assumed; the routine
  236. *> only calculates and returns the optimal and minimal sizes
  237. *> for the WORK, IWORK, and RWORK arrays, and no error
  238. *> message related to LWORK is issued by XERBLA.
  239. *> \endverbatim
  240. *>
  241. *> \param[out] WORK
  242. *> \verbatim
  243. *> WORK is REAL array, dimension (max(2, LWORK)), used as a workspace.
  244. *> On exit, if, on entry, LWORK.NE.-1, WORK(1:N) contains parameters
  245. *> needed to recover the Q factor from the QR factorization computed by
  246. *> SGEQP3.
  247. *>
  248. *> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
  249. *> WORK(1) returns the optimal LWORK, and
  250. *> WORK(2) returns the minimal LWORK.
  251. *> \endverbatim
  252. *>
  253. *> \param[in,out] LWORK
  254. *> \verbatim
  255. *> LWORK is INTEGER
  256. *> The dimension of the array WORK. It is determined as follows:
  257. *> Let LWQP3 = 3*N+1, LWCON = 3*N, and let
  258. *> LWORQ = { MAX( N, 1 ), if JOBU = 'R', 'S', or 'U'
  259. *> { MAX( M, 1 ), if JOBU = 'A'
  260. *> LWSVD = MAX( 5*N, 1 )
  261. *> LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 5*(N/2), 1 ), LWORLQ = MAX( N, 1 ),
  262. *> LWQRF = MAX( N/2, 1 ), LWORQ2 = MAX( N, 1 )
  263. *> Then the minimal value of LWORK is:
  264. *> = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
  265. *> = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
  266. *> and a scaled condition estimate requested;
  267. *>
  268. *> = N + MAX( LWQP3, LWSVD, LWORQ ) if the singular values and the left
  269. *> singular vectors are requested;
  270. *> = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the singular values and the left
  271. *> singular vectors are requested, and also
  272. *> a scaled condition estimate requested;
  273. *>
  274. *> = N + MAX( LWQP3, LWSVD ) if the singular values and the right
  275. *> singular vectors are requested;
  276. *> = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
  277. *> singular vectors are requested, and also
  278. *> a scaled condition etimate requested;
  279. *>
  280. *> = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV = 'R';
  281. *> independent of JOBR;
  282. *> = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the full SVD is requested,
  283. *> JOBV = 'R' and, also a scaled condition
  284. *> estimate requested; independent of JOBR;
  285. *> = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
  286. *> N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ) ) if the
  287. *> full SVD is requested with JOBV = 'A' or 'V', and
  288. *> JOBR ='N'
  289. *> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
  290. *> N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ ) )
  291. *> if the full SVD is requested with JOBV = 'A' or 'V', and
  292. *> JOBR ='N', and also a scaled condition number estimate
  293. *> requested.
  294. *> = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
  295. *> N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) if the
  296. *> full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
  297. *> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
  298. *> N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) )
  299. *> if the full SVD is requested with JOBV = 'A' or 'V', and
  300. *> JOBR ='T', and also a scaled condition number estimate
  301. *> requested.
  302. *> Finally, LWORK must be at least two: LWORK = MAX( 2, LWORK ).
  303. *>
  304. *> If LWORK = -1, then a workspace query is assumed; the routine
  305. *> only calculates and returns the optimal and minimal sizes
  306. *> for the WORK, IWORK, and RWORK arrays, and no error
  307. *> message related to LWORK is issued by XERBLA.
  308. *> \endverbatim
  309. *>
  310. *> \param[out] RWORK
  311. *> \verbatim
  312. *> RWORK is REAL array, dimension (max(1, LRWORK)).
  313. *> On exit,
  314. *> 1. If JOBA = 'E', RWORK(1) contains an estimate of the condition
  315. *> number of column scaled A. If A = C * D where D is diagonal and C
  316. *> has unit columns in the Euclidean norm, then, assuming full column rank,
  317. *> N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
  318. *> Otherwise, RWORK(1) = -1.
  319. *> 2. RWORK(2) contains the number of singular values computed as
  320. *> exact zeros in SGESVD applied to the upper triangular or trapezoidal
  321. *> R (from the initial QR factorization). In case of early exit (no call to
  322. *> SGESVD, such as in the case of zero matrix) RWORK(2) = -1.
  323. *>
  324. *> If LIWORK, LWORK, or LRWORK = -1, then on exit, if INFO = 0,
  325. *> RWORK(1) returns the minimal LRWORK.
  326. *> \endverbatim
  327. *>
  328. *> \param[in] LRWORK
  329. *> \verbatim
  330. *> LRWORK is INTEGER.
  331. *> The dimension of the array RWORK.
  332. *> If JOBP ='P', then LRWORK >= MAX(2, M).
  333. *> Otherwise, LRWORK >= 2
  334. *>
  335. *> If LRWORK = -1, then a workspace query is assumed; the routine
  336. *> only calculates and returns the optimal and minimal sizes
  337. *> for the WORK, IWORK, and RWORK arrays, and no error
  338. *> message related to LWORK is issued by XERBLA.
  339. *> \endverbatim
  340. *>
  341. *> \param[out] INFO
  342. *> \verbatim
  343. *> INFO is INTEGER
  344. *> = 0: successful exit.
  345. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  346. *> > 0: if SBDSQR did not converge, INFO specifies how many superdiagonals
  347. *> of an intermediate bidiagonal form B (computed in SGESVD) did not
  348. *> converge to zero.
  349. *> \endverbatim
  350. *
  351. *> \par Further Details:
  352. * ========================
  353. *>
  354. *> \verbatim
  355. *>
  356. *> 1. The data movement (matrix transpose) is coded using simple nested
  357. *> DO-loops because BLAS and LAPACK do not provide corresponding subroutines.
  358. *> Those DO-loops are easily identified in this source code - by the CONTINUE
  359. *> statements labeled with 11**. In an optimized version of this code, the
  360. *> nested DO loops should be replaced with calls to an optimized subroutine.
  361. *> 2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause
  362. *> column norm overflow. This is the minial precaution and it is left to the
  363. *> SVD routine (CGESVD) to do its own preemptive scaling if potential over-
  364. *> or underflows are detected. To avoid repeated scanning of the array A,
  365. *> an optimal implementation would do all necessary scaling before calling
  366. *> CGESVD and the scaling in CGESVD can be switched off.
  367. *> 3. Other comments related to code optimization are given in comments in the
  368. *> code, enlosed in [[double brackets]].
  369. *> \endverbatim
  370. *
  371. *> \par Bugs, examples and comments
  372. * ===========================
  373. *
  374. *> \verbatim
  375. *> Please report all bugs and send interesting examples and/or comments to
  376. *> drmac@math.hr. Thank you.
  377. *> \endverbatim
  378. *
  379. *> \par References
  380. * ===============
  381. *
  382. *> \verbatim
  383. *> [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for
  384. *> Computing the SVD with High Accuracy. ACM Trans. Math. Softw.
  385. *> 44(1): 11:1-11:30 (2017)
  386. *>
  387. *> SIGMA library, xGESVDQ section updated February 2016.
  388. *> Developed and coded by Zlatko Drmac, Department of Mathematics
  389. *> University of Zagreb, Croatia, drmac@math.hr
  390. *> \endverbatim
  391. *
  392. *
  393. *> \par Contributors:
  394. * ==================
  395. *>
  396. *> \verbatim
  397. *> Developed and coded by Zlatko Drmac, Department of Mathematics
  398. *> University of Zagreb, Croatia, drmac@math.hr
  399. *> \endverbatim
  400. *
  401. * Authors:
  402. * ========
  403. *
  404. *> \author Univ. of Tennessee
  405. *> \author Univ. of California Berkeley
  406. *> \author Univ. of Colorado Denver
  407. *> \author NAG Ltd.
  408. *
  409. *> \ingroup realGEsing
  410. *
  411. * =====================================================================
  412. SUBROUTINE SGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
  413. $ S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
  414. $ WORK, LWORK, RWORK, LRWORK, INFO )
  415. * .. Scalar Arguments ..
  416. IMPLICIT NONE
  417. CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
  418. INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LWORK, LRWORK,
  419. $ INFO
  420. * ..
  421. * .. Array Arguments ..
  422. REAL A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
  423. REAL S( * ), RWORK( * )
  424. INTEGER IWORK( * )
  425. *
  426. * =====================================================================
  427. *
  428. * .. Parameters ..
  429. REAL ZERO, ONE
  430. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  431. * ..
  432. * .. Local Scalars ..
  433. INTEGER IERR, IWOFF, NR, N1, OPTRATIO, p, q
  434. INTEGER LWCON, LWQP3, LWRK_SGELQF, LWRK_SGESVD, LWRK_SGESVD2,
  435. $ LWRK_SGEQP3, LWRK_SGEQRF, LWRK_SORMLQ, LWRK_SORMQR,
  436. $ LWRK_SORMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWORQ,
  437. $ LWORQ2, LWUNLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2,
  438. $ IMINWRK, RMINWRK
  439. LOGICAL ACCLA, ACCLM, ACCLH, ASCALED, CONDA, DNTWU, DNTWV,
  440. $ LQUERY, LSVC0, LSVEC, ROWPRM, RSVEC, RTRANS, WNTUA,
  441. $ WNTUF, WNTUR, WNTUS, WNTVA, WNTVR
  442. REAL BIG, EPSLN, RTMP, SCONDA, SFMIN
  443. * ..
  444. * .. Local Arrays
  445. REAL RDUMMY(1)
  446. * ..
  447. * .. External Subroutines (BLAS, LAPACK)
  448. EXTERNAL SGELQF, SGEQP3, SGEQRF, SGESVD, SLACPY, SLAPMT,
  449. $ SLASCL, SLASET, SLASWP, SSCAL, SPOCON, SORMLQ,
  450. $ SORMQR, XERBLA
  451. * ..
  452. * .. External Functions (BLAS, LAPACK)
  453. LOGICAL LSAME
  454. INTEGER ISAMAX
  455. REAL SLANGE, SNRM2, SLAMCH
  456. EXTERNAL SLANGE, LSAME, ISAMAX, SNRM2, SLAMCH
  457. * ..
  458. * .. Intrinsic Functions ..
  459. INTRINSIC ABS, MAX, MIN, REAL, SQRT
  460. * ..
  461. * .. Executable Statements ..
  462. *
  463. * Test the input arguments
  464. *
  465. WNTUS = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' )
  466. WNTUR = LSAME( JOBU, 'R' )
  467. WNTUA = LSAME( JOBU, 'A' )
  468. WNTUF = LSAME( JOBU, 'F' )
  469. LSVC0 = WNTUS .OR. WNTUR .OR. WNTUA
  470. LSVEC = LSVC0 .OR. WNTUF
  471. DNTWU = LSAME( JOBU, 'N' )
  472. *
  473. WNTVR = LSAME( JOBV, 'R' )
  474. WNTVA = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' )
  475. RSVEC = WNTVR .OR. WNTVA
  476. DNTWV = LSAME( JOBV, 'N' )
  477. *
  478. ACCLA = LSAME( JOBA, 'A' )
  479. ACCLM = LSAME( JOBA, 'M' )
  480. CONDA = LSAME( JOBA, 'E' )
  481. ACCLH = LSAME( JOBA, 'H' ) .OR. CONDA
  482. *
  483. ROWPRM = LSAME( JOBP, 'P' )
  484. RTRANS = LSAME( JOBR, 'T' )
  485. *
  486. IF ( ROWPRM ) THEN
  487. IF ( CONDA ) THEN
  488. IMINWRK = MAX( 1, N + M - 1 + N )
  489. ELSE
  490. IMINWRK = MAX( 1, N + M - 1 )
  491. END IF
  492. RMINWRK = MAX( 2, M )
  493. ELSE
  494. IF ( CONDA ) THEN
  495. IMINWRK = MAX( 1, N + N )
  496. ELSE
  497. IMINWRK = MAX( 1, N )
  498. END IF
  499. RMINWRK = 2
  500. END IF
  501. LQUERY = (LIWORK .EQ. -1 .OR. LWORK .EQ. -1 .OR. LRWORK .EQ. -1)
  502. INFO = 0
  503. IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN
  504. INFO = -1
  505. ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN
  506. INFO = -2
  507. ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN
  508. INFO = -3
  509. ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN
  510. INFO = -4
  511. ELSE IF ( WNTUR .AND. WNTVA ) THEN
  512. INFO = -5
  513. ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN
  514. INFO = -5
  515. ELSE IF ( M.LT.0 ) THEN
  516. INFO = -6
  517. ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
  518. INFO = -7
  519. ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
  520. INFO = -9
  521. ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR.
  522. $ ( WNTUF .AND. LDU.LT.N ) ) THEN
  523. INFO = -12
  524. ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR.
  525. $ ( CONDA .AND. LDV.LT.N ) ) THEN
  526. INFO = -14
  527. ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN
  528. INFO = -17
  529. END IF
  530. *
  531. *
  532. IF ( INFO .EQ. 0 ) THEN
  533. * .. compute the minimal and the optimal workspace lengths
  534. * [[The expressions for computing the minimal and the optimal
  535. * values of LWORK are written with a lot of redundancy and
  536. * can be simplified. However, this detailed form is easier for
  537. * maintenance and modifications of the code.]]
  538. *
  539. * .. minimal workspace length for SGEQP3 of an M x N matrix
  540. LWQP3 = 3 * N + 1
  541. * .. minimal workspace length for SORMQR to build left singular vectors
  542. IF ( WNTUS .OR. WNTUR ) THEN
  543. LWORQ = MAX( N , 1 )
  544. ELSE IF ( WNTUA ) THEN
  545. LWORQ = MAX( M , 1 )
  546. END IF
  547. * .. minimal workspace length for SPOCON of an N x N matrix
  548. LWCON = 3 * N
  549. * .. SGESVD of an N x N matrix
  550. LWSVD = MAX( 5 * N, 1 )
  551. IF ( LQUERY ) THEN
  552. CALL SGEQP3( M, N, A, LDA, IWORK, RDUMMY, RDUMMY, -1,
  553. $ IERR )
  554. LWRK_SGEQP3 = INT( RDUMMY(1) )
  555. IF ( WNTUS .OR. WNTUR ) THEN
  556. CALL SORMQR( 'L', 'N', M, N, N, A, LDA, RDUMMY, U,
  557. $ LDU, RDUMMY, -1, IERR )
  558. LWRK_SORMQR = INT( RDUMMY(1) )
  559. ELSE IF ( WNTUA ) THEN
  560. CALL SORMQR( 'L', 'N', M, M, N, A, LDA, RDUMMY, U,
  561. $ LDU, RDUMMY, -1, IERR )
  562. LWRK_SORMQR = INT( RDUMMY(1) )
  563. ELSE
  564. LWRK_SORMQR = 0
  565. END IF
  566. END IF
  567. MINWRK = 2
  568. OPTWRK = 2
  569. IF ( .NOT. (LSVEC .OR. RSVEC )) THEN
  570. * .. minimal and optimal sizes of the workspace if
  571. * only the singular values are requested
  572. IF ( CONDA ) THEN
  573. MINWRK = MAX( N+LWQP3, LWCON, LWSVD )
  574. ELSE
  575. MINWRK = MAX( N+LWQP3, LWSVD )
  576. END IF
  577. IF ( LQUERY ) THEN
  578. CALL SGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU,
  579. $ V, LDV, RDUMMY, -1, IERR )
  580. LWRK_SGESVD = INT( RDUMMY(1) )
  581. IF ( CONDA ) THEN
  582. OPTWRK = MAX( N+LWRK_SGEQP3, N+LWCON, LWRK_SGESVD )
  583. ELSE
  584. OPTWRK = MAX( N+LWRK_SGEQP3, LWRK_SGESVD )
  585. END IF
  586. END IF
  587. ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
  588. * .. minimal and optimal sizes of the workspace if the
  589. * singular values and the left singular vectors are requested
  590. IF ( CONDA ) THEN
  591. MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWORQ )
  592. ELSE
  593. MINWRK = N + MAX( LWQP3, LWSVD, LWORQ )
  594. END IF
  595. IF ( LQUERY ) THEN
  596. IF ( RTRANS ) THEN
  597. CALL SGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
  598. $ V, LDV, RDUMMY, -1, IERR )
  599. ELSE
  600. CALL SGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
  601. $ V, LDV, RDUMMY, -1, IERR )
  602. END IF
  603. LWRK_SGESVD = INT( RDUMMY(1) )
  604. IF ( CONDA ) THEN
  605. OPTWRK = N + MAX( LWRK_SGEQP3, LWCON, LWRK_SGESVD,
  606. $ LWRK_SORMQR )
  607. ELSE
  608. OPTWRK = N + MAX( LWRK_SGEQP3, LWRK_SGESVD,
  609. $ LWRK_SORMQR )
  610. END IF
  611. END IF
  612. ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
  613. * .. minimal and optimal sizes of the workspace if the
  614. * singular values and the right singular vectors are requested
  615. IF ( CONDA ) THEN
  616. MINWRK = N + MAX( LWQP3, LWCON, LWSVD )
  617. ELSE
  618. MINWRK = N + MAX( LWQP3, LWSVD )
  619. END IF
  620. IF ( LQUERY ) THEN
  621. IF ( RTRANS ) THEN
  622. CALL SGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
  623. $ V, LDV, RDUMMY, -1, IERR )
  624. ELSE
  625. CALL SGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
  626. $ V, LDV, RDUMMY, -1, IERR )
  627. END IF
  628. LWRK_SGESVD = INT( RDUMMY(1) )
  629. IF ( CONDA ) THEN
  630. OPTWRK = N + MAX( LWRK_SGEQP3, LWCON, LWRK_SGESVD )
  631. ELSE
  632. OPTWRK = N + MAX( LWRK_SGEQP3, LWRK_SGESVD )
  633. END IF
  634. END IF
  635. ELSE
  636. * .. minimal and optimal sizes of the workspace if the
  637. * full SVD is requested
  638. IF ( RTRANS ) THEN
  639. MINWRK = MAX( LWQP3, LWSVD, LWORQ )
  640. IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
  641. MINWRK = MINWRK + N
  642. IF ( WNTVA ) THEN
  643. * .. minimal workspace length for N x N/2 SGEQRF
  644. LWQRF = MAX( N/2, 1 )
  645. * .. minimal workspace length for N/2 x N/2 SGESVD
  646. LWSVD2 = MAX( 5 * (N/2), 1 )
  647. LWORQ2 = MAX( N, 1 )
  648. MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2,
  649. $ N/2+LWORQ2, LWORQ )
  650. IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
  651. MINWRK2 = N + MINWRK2
  652. MINWRK = MAX( MINWRK, MINWRK2 )
  653. END IF
  654. ELSE
  655. MINWRK = MAX( LWQP3, LWSVD, LWORQ )
  656. IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
  657. MINWRK = MINWRK + N
  658. IF ( WNTVA ) THEN
  659. * .. minimal workspace length for N/2 x N SGELQF
  660. LWLQF = MAX( N/2, 1 )
  661. LWSVD2 = MAX( 5 * (N/2), 1 )
  662. LWUNLQ = MAX( N , 1 )
  663. MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2,
  664. $ N/2+LWUNLQ, LWORQ )
  665. IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
  666. MINWRK2 = N + MINWRK2
  667. MINWRK = MAX( MINWRK, MINWRK2 )
  668. END IF
  669. END IF
  670. IF ( LQUERY ) THEN
  671. IF ( RTRANS ) THEN
  672. CALL SGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU,
  673. $ V, LDV, RDUMMY, -1, IERR )
  674. LWRK_SGESVD = INT( RDUMMY(1) )
  675. OPTWRK = MAX(LWRK_SGEQP3,LWRK_SGESVD,LWRK_SORMQR)
  676. IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
  677. OPTWRK = N + OPTWRK
  678. IF ( WNTVA ) THEN
  679. CALL SGEQRF(N,N/2,U,LDU,RDUMMY,RDUMMY,-1,IERR)
  680. LWRK_SGEQRF = INT( RDUMMY(1) )
  681. CALL SGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,LDU,
  682. $ V, LDV, RDUMMY, -1, IERR )
  683. LWRK_SGESVD2 = INT( RDUMMY(1) )
  684. CALL SORMQR( 'R', 'C', N, N, N/2, U, LDU, RDUMMY,
  685. $ V, LDV, RDUMMY, -1, IERR )
  686. LWRK_SORMQR2 = INT( RDUMMY(1) )
  687. OPTWRK2 = MAX( LWRK_SGEQP3, N/2+LWRK_SGEQRF,
  688. $ N/2+LWRK_SGESVD2, N/2+LWRK_SORMQR2 )
  689. IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
  690. OPTWRK2 = N + OPTWRK2
  691. OPTWRK = MAX( OPTWRK, OPTWRK2 )
  692. END IF
  693. ELSE
  694. CALL SGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU,
  695. $ V, LDV, RDUMMY, -1, IERR )
  696. LWRK_SGESVD = INT( RDUMMY(1) )
  697. OPTWRK = MAX(LWRK_SGEQP3,LWRK_SGESVD,LWRK_SORMQR)
  698. IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
  699. OPTWRK = N + OPTWRK
  700. IF ( WNTVA ) THEN
  701. CALL SGELQF(N/2,N,U,LDU,RDUMMY,RDUMMY,-1,IERR)
  702. LWRK_SGELQF = INT( RDUMMY(1) )
  703. CALL SGESVD( 'S','O', N/2,N/2, V, LDV, S, U, LDU,
  704. $ V, LDV, RDUMMY, -1, IERR )
  705. LWRK_SGESVD2 = INT( RDUMMY(1) )
  706. CALL SORMLQ( 'R', 'N', N, N, N/2, U, LDU, RDUMMY,
  707. $ V, LDV, RDUMMY,-1,IERR )
  708. LWRK_SORMLQ = INT( RDUMMY(1) )
  709. OPTWRK2 = MAX( LWRK_SGEQP3, N/2+LWRK_SGELQF,
  710. $ N/2+LWRK_SGESVD2, N/2+LWRK_SORMLQ )
  711. IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
  712. OPTWRK2 = N + OPTWRK2
  713. OPTWRK = MAX( OPTWRK, OPTWRK2 )
  714. END IF
  715. END IF
  716. END IF
  717. END IF
  718. *
  719. MINWRK = MAX( 2, MINWRK )
  720. OPTWRK = MAX( 2, OPTWRK )
  721. IF ( LWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19
  722. *
  723. END IF
  724. *
  725. IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN
  726. INFO = -21
  727. END IF
  728. IF( INFO.NE.0 ) THEN
  729. CALL XERBLA( 'SGESVDQ', -INFO )
  730. RETURN
  731. ELSE IF ( LQUERY ) THEN
  732. *
  733. * Return optimal workspace
  734. *
  735. IWORK(1) = IMINWRK
  736. WORK(1) = OPTWRK
  737. WORK(2) = MINWRK
  738. RWORK(1) = RMINWRK
  739. RETURN
  740. END IF
  741. *
  742. * Quick return if the matrix is void.
  743. *
  744. IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN
  745. * .. all output is void.
  746. RETURN
  747. END IF
  748. *
  749. BIG = SLAMCH('O')
  750. ASCALED = .FALSE.
  751. IWOFF = 1
  752. IF ( ROWPRM ) THEN
  753. IWOFF = M
  754. * .. reordering the rows in decreasing sequence in the
  755. * ell-infinity norm - this enhances numerical robustness in
  756. * the case of differently scaled rows.
  757. DO 1904 p = 1, M
  758. * RWORK(p) = ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
  759. * [[SLANGE will return NaN if an entry of the p-th row is Nan]]
  760. RWORK(p) = SLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY )
  761. * .. check for NaN's and Inf's
  762. IF ( ( RWORK(p) .NE. RWORK(p) ) .OR.
  763. $ ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN
  764. INFO = -8
  765. CALL XERBLA( 'SGESVDQ', -INFO )
  766. RETURN
  767. END IF
  768. 1904 CONTINUE
  769. DO 1952 p = 1, M - 1
  770. q = ISAMAX( M-p+1, RWORK(p), 1 ) + p - 1
  771. IWORK(N+p) = q
  772. IF ( p .NE. q ) THEN
  773. RTMP = RWORK(p)
  774. RWORK(p) = RWORK(q)
  775. RWORK(q) = RTMP
  776. END IF
  777. 1952 CONTINUE
  778. *
  779. IF ( RWORK(1) .EQ. ZERO ) THEN
  780. * Quick return: A is the M x N zero matrix.
  781. NUMRANK = 0
  782. CALL SLASET( 'G', N, 1, ZERO, ZERO, S, N )
  783. IF ( WNTUS ) CALL SLASET('G', M, N, ZERO, ONE, U, LDU)
  784. IF ( WNTUA ) CALL SLASET('G', M, M, ZERO, ONE, U, LDU)
  785. IF ( WNTVA ) CALL SLASET('G', N, N, ZERO, ONE, V, LDV)
  786. IF ( WNTUF ) THEN
  787. CALL SLASET( 'G', N, 1, ZERO, ZERO, WORK, N )
  788. CALL SLASET( 'G', M, N, ZERO, ONE, U, LDU )
  789. END IF
  790. DO 5001 p = 1, N
  791. IWORK(p) = p
  792. 5001 CONTINUE
  793. IF ( ROWPRM ) THEN
  794. DO 5002 p = N + 1, N + M - 1
  795. IWORK(p) = p - N
  796. 5002 CONTINUE
  797. END IF
  798. IF ( CONDA ) RWORK(1) = -1
  799. RWORK(2) = -1
  800. RETURN
  801. END IF
  802. *
  803. IF ( RWORK(1) .GT. BIG / SQRT(REAL(M)) ) THEN
  804. * .. to prevent overflow in the QR factorization, scale the
  805. * matrix by 1/sqrt(M) if too large entry detected
  806. CALL SLASCL('G',0,0,SQRT(REAL(M)),ONE, M,N, A,LDA, IERR)
  807. ASCALED = .TRUE.
  808. END IF
  809. CALL SLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 )
  810. END IF
  811. *
  812. * .. At this stage, preemptive scaling is done only to avoid column
  813. * norms overflows during the QR factorization. The SVD procedure should
  814. * have its own scaling to save the singular values from overflows and
  815. * underflows. That depends on the SVD procedure.
  816. *
  817. IF ( .NOT.ROWPRM ) THEN
  818. RTMP = SLANGE( 'M', M, N, A, LDA, RDUMMY )
  819. IF ( ( RTMP .NE. RTMP ) .OR.
  820. $ ( (RTMP*ZERO) .NE. ZERO ) ) THEN
  821. INFO = -8
  822. CALL XERBLA( 'SGESVDQ', -INFO )
  823. RETURN
  824. END IF
  825. IF ( RTMP .GT. BIG / SQRT(REAL(M)) ) THEN
  826. * .. to prevent overflow in the QR factorization, scale the
  827. * matrix by 1/sqrt(M) if too large entry detected
  828. CALL SLASCL('G',0,0, SQRT(REAL(M)),ONE, M,N, A,LDA, IERR)
  829. ASCALED = .TRUE.
  830. END IF
  831. END IF
  832. *
  833. * .. QR factorization with column pivoting
  834. *
  835. * A * P = Q * [ R ]
  836. * [ 0 ]
  837. *
  838. DO 1963 p = 1, N
  839. * .. all columns are free columns
  840. IWORK(p) = 0
  841. 1963 CONTINUE
  842. CALL SGEQP3( M, N, A, LDA, IWORK, WORK, WORK(N+1), LWORK-N,
  843. $ IERR )
  844. *
  845. * If the user requested accuracy level allows truncation in the
  846. * computed upper triangular factor, the matrix R is examined and,
  847. * if possible, replaced with its leading upper trapezoidal part.
  848. *
  849. EPSLN = SLAMCH('E')
  850. SFMIN = SLAMCH('S')
  851. * SMALL = SFMIN / EPSLN
  852. NR = N
  853. *
  854. IF ( ACCLA ) THEN
  855. *
  856. * Standard absolute error bound suffices. All sigma_i with
  857. * sigma_i < N*EPS*||A||_F are flushed to zero. This is an
  858. * aggressive enforcement of lower numerical rank by introducing a
  859. * backward error of the order of N*EPS*||A||_F.
  860. NR = 1
  861. RTMP = SQRT(REAL(N))*EPSLN
  862. DO 3001 p = 2, N
  863. IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002
  864. NR = NR + 1
  865. 3001 CONTINUE
  866. 3002 CONTINUE
  867. *
  868. ELSEIF ( ACCLM ) THEN
  869. * .. similarly as above, only slightly more gentle (less aggressive).
  870. * Sudden drop on the diagonal of R is used as the criterion for being
  871. * close-to-rank-deficient. The threshold is set to EPSLN=SLAMCH('E').
  872. * [[This can be made more flexible by replacing this hard-coded value
  873. * with a user specified threshold.]] Also, the values that underflow
  874. * will be truncated.
  875. NR = 1
  876. DO 3401 p = 2, N
  877. IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
  878. $ ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402
  879. NR = NR + 1
  880. 3401 CONTINUE
  881. 3402 CONTINUE
  882. *
  883. ELSE
  884. * .. RRQR not authorized to determine numerical rank except in the
  885. * obvious case of zero pivots.
  886. * .. inspect R for exact zeros on the diagonal;
  887. * R(i,i)=0 => R(i:N,i:N)=0.
  888. NR = 1
  889. DO 3501 p = 2, N
  890. IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502
  891. NR = NR + 1
  892. 3501 CONTINUE
  893. 3502 CONTINUE
  894. *
  895. IF ( CONDA ) THEN
  896. * Estimate the scaled condition number of A. Use the fact that it is
  897. * the same as the scaled condition number of R.
  898. * .. V is used as workspace
  899. CALL SLACPY( 'U', N, N, A, LDA, V, LDV )
  900. * Only the leading NR x NR submatrix of the triangular factor
  901. * is considered. Only if NR=N will this give a reliable error
  902. * bound. However, even for NR < N, this can be used on an
  903. * expert level and obtain useful information in the sense of
  904. * perturbation theory.
  905. DO 3053 p = 1, NR
  906. RTMP = SNRM2( p, V(1,p), 1 )
  907. CALL SSCAL( p, ONE/RTMP, V(1,p), 1 )
  908. 3053 CONTINUE
  909. IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN
  910. CALL SPOCON( 'U', NR, V, LDV, ONE, RTMP,
  911. $ WORK, IWORK(N+IWOFF), IERR )
  912. ELSE
  913. CALL SPOCON( 'U', NR, V, LDV, ONE, RTMP,
  914. $ WORK(N+1), IWORK(N+IWOFF), IERR )
  915. END IF
  916. SCONDA = ONE / SQRT(RTMP)
  917. * For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1),
  918. * N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  919. * See the reference [1] for more details.
  920. END IF
  921. *
  922. ENDIF
  923. *
  924. IF ( WNTUR ) THEN
  925. N1 = NR
  926. ELSE IF ( WNTUS .OR. WNTUF) THEN
  927. N1 = N
  928. ELSE IF ( WNTUA ) THEN
  929. N1 = M
  930. END IF
  931. *
  932. IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
  933. *.......................................................................
  934. * .. only the singular values are requested
  935. *.......................................................................
  936. IF ( RTRANS ) THEN
  937. *
  938. * .. compute the singular values of R**T = [A](1:NR,1:N)**T
  939. * .. set the lower triangle of [A] to [A](1:NR,1:N)**T and
  940. * the upper triangle of [A] to zero.
  941. DO 1146 p = 1, MIN( N, NR )
  942. DO 1147 q = p + 1, N
  943. A(q,p) = A(p,q)
  944. IF ( q .LE. NR ) A(p,q) = ZERO
  945. 1147 CONTINUE
  946. 1146 CONTINUE
  947. *
  948. CALL SGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU,
  949. $ V, LDV, WORK, LWORK, INFO )
  950. *
  951. ELSE
  952. *
  953. * .. compute the singular values of R = [A](1:NR,1:N)
  954. *
  955. IF ( NR .GT. 1 )
  956. $ CALL SLASET( 'L', NR-1,NR-1, ZERO,ZERO, A(2,1), LDA )
  957. CALL SGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU,
  958. $ V, LDV, WORK, LWORK, INFO )
  959. *
  960. END IF
  961. *
  962. ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN
  963. *.......................................................................
  964. * .. the singular values and the left singular vectors requested
  965. *.......................................................................""""""""
  966. IF ( RTRANS ) THEN
  967. * .. apply SGESVD to R**T
  968. * .. copy R**T into [U] and overwrite [U] with the right singular
  969. * vectors of R
  970. DO 1192 p = 1, NR
  971. DO 1193 q = p, N
  972. U(q,p) = A(p,q)
  973. 1193 CONTINUE
  974. 1192 CONTINUE
  975. IF ( NR .GT. 1 )
  976. $ CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, U(1,2), LDU )
  977. * .. the left singular vectors not computed, the NR right singular
  978. * vectors overwrite [U](1:NR,1:NR) as transposed. These
  979. * will be pre-multiplied by Q to build the left singular vectors of A.
  980. CALL SGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU,
  981. $ U, LDU, WORK(N+1), LWORK-N, INFO )
  982. *
  983. DO 1119 p = 1, NR
  984. DO 1120 q = p + 1, NR
  985. RTMP = U(q,p)
  986. U(q,p) = U(p,q)
  987. U(p,q) = RTMP
  988. 1120 CONTINUE
  989. 1119 CONTINUE
  990. *
  991. ELSE
  992. * .. apply SGESVD to R
  993. * .. copy R into [U] and overwrite [U] with the left singular vectors
  994. CALL SLACPY( 'U', NR, N, A, LDA, U, LDU )
  995. IF ( NR .GT. 1 )
  996. $ CALL SLASET( 'L', NR-1, NR-1, ZERO, ZERO, U(2,1), LDU )
  997. * .. the right singular vectors not computed, the NR left singular
  998. * vectors overwrite [U](1:NR,1:NR)
  999. CALL SGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU,
  1000. $ V, LDV, WORK(N+1), LWORK-N, INFO )
  1001. * .. now [U](1:NR,1:NR) contains the NR left singular vectors of
  1002. * R. These will be pre-multiplied by Q to build the left singular
  1003. * vectors of A.
  1004. END IF
  1005. *
  1006. * .. assemble the left singular vector matrix U of dimensions
  1007. * (M x NR) or (M x N) or (M x M).
  1008. IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN
  1009. CALL SLASET('A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU)
  1010. IF ( NR .LT. N1 ) THEN
  1011. CALL SLASET( 'A',NR,N1-NR,ZERO,ZERO,U(1,NR+1), LDU )
  1012. CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,
  1013. $ U(NR+1,NR+1), LDU )
  1014. END IF
  1015. END IF
  1016. *
  1017. * The Q matrix from the first QRF is built into the left singular
  1018. * vectors matrix U.
  1019. *
  1020. IF ( .NOT.WNTUF )
  1021. $ CALL SORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U,
  1022. $ LDU, WORK(N+1), LWORK-N, IERR )
  1023. IF ( ROWPRM .AND. .NOT.WNTUF )
  1024. $ CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
  1025. *
  1026. ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
  1027. *.......................................................................
  1028. * .. the singular values and the right singular vectors requested
  1029. *.......................................................................
  1030. IF ( RTRANS ) THEN
  1031. * .. apply SGESVD to R**T
  1032. * .. copy R**T into V and overwrite V with the left singular vectors
  1033. DO 1165 p = 1, NR
  1034. DO 1166 q = p, N
  1035. V(q,p) = (A(p,q))
  1036. 1166 CONTINUE
  1037. 1165 CONTINUE
  1038. IF ( NR .GT. 1 )
  1039. $ CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
  1040. * .. the left singular vectors of R**T overwrite V, the right singular
  1041. * vectors not computed
  1042. IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
  1043. CALL SGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU,
  1044. $ U, LDU, WORK(N+1), LWORK-N, INFO )
  1045. *
  1046. DO 1121 p = 1, NR
  1047. DO 1122 q = p + 1, NR
  1048. RTMP = V(q,p)
  1049. V(q,p) = V(p,q)
  1050. V(p,q) = RTMP
  1051. 1122 CONTINUE
  1052. 1121 CONTINUE
  1053. *
  1054. IF ( NR .LT. N ) THEN
  1055. DO 1103 p = 1, NR
  1056. DO 1104 q = NR + 1, N
  1057. V(p,q) = V(q,p)
  1058. 1104 CONTINUE
  1059. 1103 CONTINUE
  1060. END IF
  1061. CALL SLAPMT( .FALSE., NR, N, V, LDV, IWORK )
  1062. ELSE
  1063. * .. need all N right singular vectors and NR < N
  1064. * [!] This is simple implementation that augments [V](1:N,1:NR)
  1065. * by padding a zero block. In the case NR << N, a more efficient
  1066. * way is to first use the QR factorization. For more details
  1067. * how to implement this, see the " FULL SVD " branch.
  1068. CALL SLASET('G', N, N-NR, ZERO, ZERO, V(1,NR+1), LDV)
  1069. CALL SGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU,
  1070. $ U, LDU, WORK(N+1), LWORK-N, INFO )
  1071. *
  1072. DO 1123 p = 1, N
  1073. DO 1124 q = p + 1, N
  1074. RTMP = V(q,p)
  1075. V(q,p) = V(p,q)
  1076. V(p,q) = RTMP
  1077. 1124 CONTINUE
  1078. 1123 CONTINUE
  1079. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1080. END IF
  1081. *
  1082. ELSE
  1083. * .. aply SGESVD to R
  1084. * .. copy R into V and overwrite V with the right singular vectors
  1085. CALL SLACPY( 'U', NR, N, A, LDA, V, LDV )
  1086. IF ( NR .GT. 1 )
  1087. $ CALL SLASET( 'L', NR-1, NR-1, ZERO, ZERO, V(2,1), LDV )
  1088. * .. the right singular vectors overwrite V, the NR left singular
  1089. * vectors stored in U(1:NR,1:NR)
  1090. IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
  1091. CALL SGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU,
  1092. $ V, LDV, WORK(N+1), LWORK-N, INFO )
  1093. CALL SLAPMT( .FALSE., NR, N, V, LDV, IWORK )
  1094. * .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T
  1095. ELSE
  1096. * .. need all N right singular vectors and NR < N
  1097. * [!] This is simple implementation that augments [V](1:NR,1:N)
  1098. * by padding a zero block. In the case NR << N, a more efficient
  1099. * way is to first use the LQ factorization. For more details
  1100. * how to implement this, see the " FULL SVD " branch.
  1101. CALL SLASET('G', N-NR, N, ZERO,ZERO, V(NR+1,1), LDV)
  1102. CALL SGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU,
  1103. $ V, LDV, WORK(N+1), LWORK-N, INFO )
  1104. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1105. END IF
  1106. * .. now [V] contains the transposed matrix of the right singular
  1107. * vectors of A.
  1108. END IF
  1109. *
  1110. ELSE
  1111. *.......................................................................
  1112. * .. FULL SVD requested
  1113. *.......................................................................
  1114. IF ( RTRANS ) THEN
  1115. *
  1116. * .. apply SGESVD to R**T [[this option is left for R&D&T]]
  1117. *
  1118. IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
  1119. * .. copy R**T into [V] and overwrite [V] with the left singular
  1120. * vectors of R**T
  1121. DO 1168 p = 1, NR
  1122. DO 1169 q = p, N
  1123. V(q,p) = A(p,q)
  1124. 1169 CONTINUE
  1125. 1168 CONTINUE
  1126. IF ( NR .GT. 1 )
  1127. $ CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
  1128. *
  1129. * .. the left singular vectors of R**T overwrite [V], the NR right
  1130. * singular vectors of R**T stored in [U](1:NR,1:NR) as transposed
  1131. CALL SGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV,
  1132. $ U, LDU, WORK(N+1), LWORK-N, INFO )
  1133. * .. assemble V
  1134. DO 1115 p = 1, NR
  1135. DO 1116 q = p + 1, NR
  1136. RTMP = V(q,p)
  1137. V(q,p) = V(p,q)
  1138. V(p,q) = RTMP
  1139. 1116 CONTINUE
  1140. 1115 CONTINUE
  1141. IF ( NR .LT. N ) THEN
  1142. DO 1101 p = 1, NR
  1143. DO 1102 q = NR+1, N
  1144. V(p,q) = V(q,p)
  1145. 1102 CONTINUE
  1146. 1101 CONTINUE
  1147. END IF
  1148. CALL SLAPMT( .FALSE., NR, N, V, LDV, IWORK )
  1149. *
  1150. DO 1117 p = 1, NR
  1151. DO 1118 q = p + 1, NR
  1152. RTMP = U(q,p)
  1153. U(q,p) = U(p,q)
  1154. U(p,q) = RTMP
  1155. 1118 CONTINUE
  1156. 1117 CONTINUE
  1157. *
  1158. IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1159. CALL SLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU)
  1160. IF ( NR .LT. N1 ) THEN
  1161. CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
  1162. CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,
  1163. $ U(NR+1,NR+1), LDU )
  1164. END IF
  1165. END IF
  1166. *
  1167. ELSE
  1168. * .. need all N right singular vectors and NR < N
  1169. * .. copy R**T into [V] and overwrite [V] with the left singular
  1170. * vectors of R**T
  1171. * [[The optimal ratio N/NR for using QRF instead of padding
  1172. * with zeros. Here hard coded to 2; it must be at least
  1173. * two due to work space constraints.]]
  1174. * OPTRATIO = ILAENV(6, 'SGESVD', 'S' // 'O', NR,N,0,0)
  1175. * OPTRATIO = MAX( OPTRATIO, 2 )
  1176. OPTRATIO = 2
  1177. IF ( OPTRATIO*NR .GT. N ) THEN
  1178. DO 1198 p = 1, NR
  1179. DO 1199 q = p, N
  1180. V(q,p) = A(p,q)
  1181. 1199 CONTINUE
  1182. 1198 CONTINUE
  1183. IF ( NR .GT. 1 )
  1184. $ CALL SLASET('U',NR-1,NR-1, ZERO,ZERO, V(1,2),LDV)
  1185. *
  1186. CALL SLASET('A',N,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
  1187. CALL SGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV,
  1188. $ U, LDU, WORK(N+1), LWORK-N, INFO )
  1189. *
  1190. DO 1113 p = 1, N
  1191. DO 1114 q = p + 1, N
  1192. RTMP = V(q,p)
  1193. V(q,p) = V(p,q)
  1194. V(p,q) = RTMP
  1195. 1114 CONTINUE
  1196. 1113 CONTINUE
  1197. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1198. * .. assemble the left singular vector matrix U of dimensions
  1199. * (M x N1), i.e. (M x N) or (M x M).
  1200. *
  1201. DO 1111 p = 1, N
  1202. DO 1112 q = p + 1, N
  1203. RTMP = U(q,p)
  1204. U(q,p) = U(p,q)
  1205. U(p,q) = RTMP
  1206. 1112 CONTINUE
  1207. 1111 CONTINUE
  1208. *
  1209. IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1210. CALL SLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU)
  1211. IF ( N .LT. N1 ) THEN
  1212. CALL SLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU)
  1213. CALL SLASET('A',M-N,N1-N,ZERO,ONE,
  1214. $ U(N+1,N+1), LDU )
  1215. END IF
  1216. END IF
  1217. ELSE
  1218. * .. copy R**T into [U] and overwrite [U] with the right
  1219. * singular vectors of R
  1220. DO 1196 p = 1, NR
  1221. DO 1197 q = p, N
  1222. U(q,NR+p) = A(p,q)
  1223. 1197 CONTINUE
  1224. 1196 CONTINUE
  1225. IF ( NR .GT. 1 )
  1226. $ CALL SLASET('U',NR-1,NR-1,ZERO,ZERO,U(1,NR+2),LDU)
  1227. CALL SGEQRF( N, NR, U(1,NR+1), LDU, WORK(N+1),
  1228. $ WORK(N+NR+1), LWORK-N-NR, IERR )
  1229. DO 1143 p = 1, NR
  1230. DO 1144 q = 1, N
  1231. V(q,p) = U(p,NR+q)
  1232. 1144 CONTINUE
  1233. 1143 CONTINUE
  1234. CALL SLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV)
  1235. CALL SGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
  1236. $ V,LDV, WORK(N+NR+1),LWORK-N-NR, INFO )
  1237. CALL SLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
  1238. CALL SLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
  1239. CALL SLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
  1240. CALL SORMQR('R','C', N, N, NR, U(1,NR+1), LDU,
  1241. $ WORK(N+1),V,LDV,WORK(N+NR+1),LWORK-N-NR,IERR)
  1242. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1243. * .. assemble the left singular vector matrix U of dimensions
  1244. * (M x NR) or (M x N) or (M x M).
  1245. IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1246. CALL SLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU)
  1247. IF ( NR .LT. N1 ) THEN
  1248. CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
  1249. CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,
  1250. $ U(NR+1,NR+1),LDU)
  1251. END IF
  1252. END IF
  1253. END IF
  1254. END IF
  1255. *
  1256. ELSE
  1257. *
  1258. * .. apply SGESVD to R [[this is the recommended option]]
  1259. *
  1260. IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
  1261. * .. copy R into [V] and overwrite V with the right singular vectors
  1262. CALL SLACPY( 'U', NR, N, A, LDA, V, LDV )
  1263. IF ( NR .GT. 1 )
  1264. $ CALL SLASET( 'L', NR-1,NR-1, ZERO,ZERO, V(2,1), LDV )
  1265. * .. the right singular vectors of R overwrite [V], the NR left
  1266. * singular vectors of R stored in [U](1:NR,1:NR)
  1267. CALL SGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU,
  1268. $ V, LDV, WORK(N+1), LWORK-N, INFO )
  1269. CALL SLAPMT( .FALSE., NR, N, V, LDV, IWORK )
  1270. * .. now [V](1:NR,1:N) contains V(1:N,1:NR)**T
  1271. * .. assemble the left singular vector matrix U of dimensions
  1272. * (M x NR) or (M x N) or (M x M).
  1273. IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1274. CALL SLASET('A', M-NR,NR, ZERO,ZERO, U(NR+1,1), LDU)
  1275. IF ( NR .LT. N1 ) THEN
  1276. CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
  1277. CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,
  1278. $ U(NR+1,NR+1), LDU )
  1279. END IF
  1280. END IF
  1281. *
  1282. ELSE
  1283. * .. need all N right singular vectors and NR < N
  1284. * .. the requested number of the left singular vectors
  1285. * is then N1 (N or M)
  1286. * [[The optimal ratio N/NR for using LQ instead of padding
  1287. * with zeros. Here hard coded to 2; it must be at least
  1288. * two due to work space constraints.]]
  1289. * OPTRATIO = ILAENV(6, 'SGESVD', 'S' // 'O', NR,N,0,0)
  1290. * OPTRATIO = MAX( OPTRATIO, 2 )
  1291. OPTRATIO = 2
  1292. IF ( OPTRATIO * NR .GT. N ) THEN
  1293. CALL SLACPY( 'U', NR, N, A, LDA, V, LDV )
  1294. IF ( NR .GT. 1 )
  1295. $ CALL SLASET('L', NR-1,NR-1, ZERO,ZERO, V(2,1),LDV)
  1296. * .. the right singular vectors of R overwrite [V], the NR left
  1297. * singular vectors of R stored in [U](1:NR,1:NR)
  1298. CALL SLASET('A', N-NR,N, ZERO,ZERO, V(NR+1,1),LDV)
  1299. CALL SGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU,
  1300. $ V, LDV, WORK(N+1), LWORK-N, INFO )
  1301. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1302. * .. now [V] contains the transposed matrix of the right
  1303. * singular vectors of A. The leading N left singular vectors
  1304. * are in [U](1:N,1:N)
  1305. * .. assemble the left singular vector matrix U of dimensions
  1306. * (M x N1), i.e. (M x N) or (M x M).
  1307. IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1308. CALL SLASET('A',M-N,N,ZERO,ZERO,U(N+1,1),LDU)
  1309. IF ( N .LT. N1 ) THEN
  1310. CALL SLASET('A',N,N1-N,ZERO,ZERO,U(1,N+1),LDU)
  1311. CALL SLASET( 'A',M-N,N1-N,ZERO,ONE,
  1312. $ U(N+1,N+1), LDU )
  1313. END IF
  1314. END IF
  1315. ELSE
  1316. CALL SLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU )
  1317. IF ( NR .GT. 1 )
  1318. $ CALL SLASET('L',NR-1,NR-1,ZERO,ZERO,U(NR+2,1),LDU)
  1319. CALL SGELQF( NR, N, U(NR+1,1), LDU, WORK(N+1),
  1320. $ WORK(N+NR+1), LWORK-N-NR, IERR )
  1321. CALL SLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV)
  1322. IF ( NR .GT. 1 )
  1323. $ CALL SLASET('U',NR-1,NR-1,ZERO,ZERO,V(1,2),LDV)
  1324. CALL SGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
  1325. $ V, LDV, WORK(N+NR+1), LWORK-N-NR, INFO )
  1326. CALL SLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
  1327. CALL SLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
  1328. CALL SLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
  1329. CALL SORMLQ('R','N',N,N,NR,U(NR+1,1),LDU,WORK(N+1),
  1330. $ V, LDV, WORK(N+NR+1),LWORK-N-NR,IERR)
  1331. CALL SLAPMT( .FALSE., N, N, V, LDV, IWORK )
  1332. * .. assemble the left singular vector matrix U of dimensions
  1333. * (M x NR) or (M x N) or (M x M).
  1334. IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
  1335. CALL SLASET('A',M-NR,NR,ZERO,ZERO,U(NR+1,1),LDU)
  1336. IF ( NR .LT. N1 ) THEN
  1337. CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
  1338. CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,
  1339. $ U(NR+1,NR+1), LDU )
  1340. END IF
  1341. END IF
  1342. END IF
  1343. END IF
  1344. * .. end of the "R**T or R" branch
  1345. END IF
  1346. *
  1347. * The Q matrix from the first QRF is built into the left singular
  1348. * vectors matrix U.
  1349. *
  1350. IF ( .NOT. WNTUF )
  1351. $ CALL SORMQR( 'L', 'N', M, N1, N, A, LDA, WORK, U,
  1352. $ LDU, WORK(N+1), LWORK-N, IERR )
  1353. IF ( ROWPRM .AND. .NOT.WNTUF )
  1354. $ CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
  1355. *
  1356. * ... end of the "full SVD" branch
  1357. END IF
  1358. *
  1359. * Check whether some singular values are returned as zeros, e.g.
  1360. * due to underflow, and update the numerical rank.
  1361. p = NR
  1362. DO 4001 q = p, 1, -1
  1363. IF ( S(q) .GT. ZERO ) GO TO 4002
  1364. NR = NR - 1
  1365. 4001 CONTINUE
  1366. 4002 CONTINUE
  1367. *
  1368. * .. if numerical rank deficiency is detected, the truncated
  1369. * singular values are set to zero.
  1370. IF ( NR .LT. N ) CALL SLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1), N )
  1371. * .. undo scaling; this may cause overflow in the largest singular
  1372. * values.
  1373. IF ( ASCALED )
  1374. $ CALL SLASCL( 'G',0,0, ONE,SQRT(REAL(M)), NR,1, S, N, IERR )
  1375. IF ( CONDA ) RWORK(1) = SCONDA
  1376. RWORK(2) = p - NR
  1377. * .. p-NR is the number of singular values that are computed as
  1378. * exact zeros in SGESVD() applied to the (possibly truncated)
  1379. * full row rank triangular (trapezoidal) factor of A.
  1380. NUMRANK = NR
  1381. *
  1382. RETURN
  1383. *
  1384. * End of SGESVDQ
  1385. *
  1386. END