You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsposv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. *> \brief <b> DSPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPOSV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsposv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsposv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsposv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  22. * SWORK, ITER, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL SWORK( * )
  30. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( N, * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DSPOSV computes the solution to a real system of linear equations
  41. *> A * X = B,
  42. *> where A is an N-by-N symmetric positive definite matrix and X and B
  43. *> are N-by-NRHS matrices.
  44. *>
  45. *> DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
  46. *> and use this factorization within an iterative refinement procedure
  47. *> to produce a solution with DOUBLE PRECISION normwise backward error
  48. *> quality (see below). If the approach fails the method switches to a
  49. *> DOUBLE PRECISION factorization and solve.
  50. *>
  51. *> The iterative refinement is not going to be a winning strategy if
  52. *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
  53. *> performance is too small. A reasonable strategy should take the
  54. *> number of right-hand sides and the size of the matrix into account.
  55. *> This might be done with a call to ILAENV in the future. Up to now, we
  56. *> always try iterative refinement.
  57. *>
  58. *> The iterative refinement process is stopped if
  59. *> ITER > ITERMAX
  60. *> or for all the RHS we have:
  61. *> RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
  62. *> where
  63. *> o ITER is the number of the current iteration in the iterative
  64. *> refinement process
  65. *> o RNRM is the infinity-norm of the residual
  66. *> o XNRM is the infinity-norm of the solution
  67. *> o ANRM is the infinity-operator-norm of the matrix A
  68. *> o EPS is the machine epsilon returned by DLAMCH('Epsilon')
  69. *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
  70. *> respectively.
  71. *> \endverbatim
  72. *
  73. * Arguments:
  74. * ==========
  75. *
  76. *> \param[in] UPLO
  77. *> \verbatim
  78. *> UPLO is CHARACTER*1
  79. *> = 'U': Upper triangle of A is stored;
  80. *> = 'L': Lower triangle of A is stored.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] N
  84. *> \verbatim
  85. *> N is INTEGER
  86. *> The number of linear equations, i.e., the order of the
  87. *> matrix A. N >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] NRHS
  91. *> \verbatim
  92. *> NRHS is INTEGER
  93. *> The number of right hand sides, i.e., the number of columns
  94. *> of the matrix B. NRHS >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] A
  98. *> \verbatim
  99. *> A is DOUBLE PRECISION array,
  100. *> dimension (LDA,N)
  101. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  102. *> N-by-N upper triangular part of A contains the upper
  103. *> triangular part of the matrix A, and the strictly lower
  104. *> triangular part of A is not referenced. If UPLO = 'L', the
  105. *> leading N-by-N lower triangular part of A contains the lower
  106. *> triangular part of the matrix A, and the strictly upper
  107. *> triangular part of A is not referenced.
  108. *> On exit, if iterative refinement has been successfully used
  109. *> (INFO = 0 and ITER >= 0, see description below), then A is
  110. *> unchanged, if double precision factorization has been used
  111. *> (INFO = 0 and ITER < 0, see description below), then the
  112. *> array A contains the factor U or L from the Cholesky
  113. *> factorization A = U**T*U or A = L*L**T.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDA
  117. *> \verbatim
  118. *> LDA is INTEGER
  119. *> The leading dimension of the array A. LDA >= max(1,N).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] B
  123. *> \verbatim
  124. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  125. *> The N-by-NRHS right hand side matrix B.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDB
  129. *> \verbatim
  130. *> LDB is INTEGER
  131. *> The leading dimension of the array B. LDB >= max(1,N).
  132. *> \endverbatim
  133. *>
  134. *> \param[out] X
  135. *> \verbatim
  136. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  137. *> If INFO = 0, the N-by-NRHS solution matrix X.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDX
  141. *> \verbatim
  142. *> LDX is INTEGER
  143. *> The leading dimension of the array X. LDX >= max(1,N).
  144. *> \endverbatim
  145. *>
  146. *> \param[out] WORK
  147. *> \verbatim
  148. *> WORK is DOUBLE PRECISION array, dimension (N,NRHS)
  149. *> This array is used to hold the residual vectors.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] SWORK
  153. *> \verbatim
  154. *> SWORK is REAL array, dimension (N*(N+NRHS))
  155. *> This array is used to use the single precision matrix and the
  156. *> right-hand sides or solutions in single precision.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] ITER
  160. *> \verbatim
  161. *> ITER is INTEGER
  162. *> < 0: iterative refinement has failed, double precision
  163. *> factorization has been performed
  164. *> -1 : the routine fell back to full precision for
  165. *> implementation- or machine-specific reasons
  166. *> -2 : narrowing the precision induced an overflow,
  167. *> the routine fell back to full precision
  168. *> -3 : failure of SPOTRF
  169. *> -31: stop the iterative refinement after the 30th
  170. *> iterations
  171. *> > 0: iterative refinement has been successfully used.
  172. *> Returns the number of iterations
  173. *> \endverbatim
  174. *>
  175. *> \param[out] INFO
  176. *> \verbatim
  177. *> INFO is INTEGER
  178. *> = 0: successful exit
  179. *> < 0: if INFO = -i, the i-th argument had an illegal value
  180. *> > 0: if INFO = i, the leading minor of order i of (DOUBLE
  181. *> PRECISION) A is not positive definite, so the
  182. *> factorization could not be completed, and the solution
  183. *> has not been computed.
  184. *> \endverbatim
  185. *
  186. * Authors:
  187. * ========
  188. *
  189. *> \author Univ. of Tennessee
  190. *> \author Univ. of California Berkeley
  191. *> \author Univ. of Colorado Denver
  192. *> \author NAG Ltd.
  193. *
  194. *> \ingroup doublePOsolve
  195. *
  196. * =====================================================================
  197. SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  198. $ SWORK, ITER, INFO )
  199. *
  200. * -- LAPACK driver routine --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. *
  204. * .. Scalar Arguments ..
  205. CHARACTER UPLO
  206. INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  207. * ..
  208. * .. Array Arguments ..
  209. REAL SWORK( * )
  210. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( N, * ),
  211. $ X( LDX, * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Parameters ..
  217. LOGICAL DOITREF
  218. PARAMETER ( DOITREF = .TRUE. )
  219. *
  220. INTEGER ITERMAX
  221. PARAMETER ( ITERMAX = 30 )
  222. *
  223. DOUBLE PRECISION BWDMAX
  224. PARAMETER ( BWDMAX = 1.0E+00 )
  225. *
  226. DOUBLE PRECISION NEGONE, ONE
  227. PARAMETER ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
  228. *
  229. * .. Local Scalars ..
  230. INTEGER I, IITER, PTSA, PTSX
  231. DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM
  232. *
  233. * .. External Subroutines ..
  234. EXTERNAL DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
  235. $ SPOTRF, SPOTRS, DPOTRF, DPOTRS, XERBLA
  236. * ..
  237. * .. External Functions ..
  238. INTEGER IDAMAX
  239. DOUBLE PRECISION DLAMCH, DLANSY
  240. LOGICAL LSAME
  241. EXTERNAL IDAMAX, DLAMCH, DLANSY, LSAME
  242. * ..
  243. * .. Intrinsic Functions ..
  244. INTRINSIC ABS, DBLE, MAX, SQRT
  245. * ..
  246. * .. Executable Statements ..
  247. *
  248. INFO = 0
  249. ITER = 0
  250. *
  251. * Test the input parameters.
  252. *
  253. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  254. INFO = -1
  255. ELSE IF( N.LT.0 ) THEN
  256. INFO = -2
  257. ELSE IF( NRHS.LT.0 ) THEN
  258. INFO = -3
  259. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  260. INFO = -5
  261. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  262. INFO = -7
  263. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  264. INFO = -9
  265. END IF
  266. IF( INFO.NE.0 ) THEN
  267. CALL XERBLA( 'DSPOSV', -INFO )
  268. RETURN
  269. END IF
  270. *
  271. * Quick return if (N.EQ.0).
  272. *
  273. IF( N.EQ.0 )
  274. $ RETURN
  275. *
  276. * Skip single precision iterative refinement if a priori slower
  277. * than double precision factorization.
  278. *
  279. IF( .NOT.DOITREF ) THEN
  280. ITER = -1
  281. GO TO 40
  282. END IF
  283. *
  284. * Compute some constants.
  285. *
  286. ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
  287. EPS = DLAMCH( 'Epsilon' )
  288. CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  289. *
  290. * Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  291. *
  292. PTSA = 1
  293. PTSX = PTSA + N*N
  294. *
  295. * Convert B from double precision to single precision and store the
  296. * result in SX.
  297. *
  298. CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  299. *
  300. IF( INFO.NE.0 ) THEN
  301. ITER = -2
  302. GO TO 40
  303. END IF
  304. *
  305. * Convert A from double precision to single precision and store the
  306. * result in SA.
  307. *
  308. CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
  309. *
  310. IF( INFO.NE.0 ) THEN
  311. ITER = -2
  312. GO TO 40
  313. END IF
  314. *
  315. * Compute the Cholesky factorization of SA.
  316. *
  317. CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
  318. *
  319. IF( INFO.NE.0 ) THEN
  320. ITER = -3
  321. GO TO 40
  322. END IF
  323. *
  324. * Solve the system SA*SX = SB.
  325. *
  326. CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  327. $ INFO )
  328. *
  329. * Convert SX back to double precision
  330. *
  331. CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  332. *
  333. * Compute R = B - AX (R is WORK).
  334. *
  335. CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  336. *
  337. CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  338. $ WORK, N )
  339. *
  340. * Check whether the NRHS normwise backward errors satisfy the
  341. * stopping criterion. If yes, set ITER=0 and return.
  342. *
  343. DO I = 1, NRHS
  344. XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
  345. RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
  346. IF( RNRM.GT.XNRM*CTE )
  347. $ GO TO 10
  348. END DO
  349. *
  350. * If we are here, the NRHS normwise backward errors satisfy the
  351. * stopping criterion. We are good to exit.
  352. *
  353. ITER = 0
  354. RETURN
  355. *
  356. 10 CONTINUE
  357. *
  358. DO 30 IITER = 1, ITERMAX
  359. *
  360. * Convert R (in WORK) from double precision to single precision
  361. * and store the result in SX.
  362. *
  363. CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  364. *
  365. IF( INFO.NE.0 ) THEN
  366. ITER = -2
  367. GO TO 40
  368. END IF
  369. *
  370. * Solve the system SA*SX = SR.
  371. *
  372. CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  373. $ INFO )
  374. *
  375. * Convert SX back to double precision and update the current
  376. * iterate.
  377. *
  378. CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  379. *
  380. DO I = 1, NRHS
  381. CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  382. END DO
  383. *
  384. * Compute R = B - AX (R is WORK).
  385. *
  386. CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  387. *
  388. CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  389. $ WORK, N )
  390. *
  391. * Check whether the NRHS normwise backward errors satisfy the
  392. * stopping criterion. If yes, set ITER=IITER>0 and return.
  393. *
  394. DO I = 1, NRHS
  395. XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
  396. RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
  397. IF( RNRM.GT.XNRM*CTE )
  398. $ GO TO 20
  399. END DO
  400. *
  401. * If we are here, the NRHS normwise backward errors satisfy the
  402. * stopping criterion, we are good to exit.
  403. *
  404. ITER = IITER
  405. *
  406. RETURN
  407. *
  408. 20 CONTINUE
  409. *
  410. 30 CONTINUE
  411. *
  412. * If we are at this place of the code, this is because we have
  413. * performed ITER=ITERMAX iterations and never satisfied the
  414. * stopping criterion, set up the ITER flag accordingly and follow
  415. * up on double precision routine.
  416. *
  417. ITER = -ITERMAX - 1
  418. *
  419. 40 CONTINUE
  420. *
  421. * Single-precision iterative refinement failed to converge to a
  422. * satisfactory solution, so we resort to double precision.
  423. *
  424. CALL DPOTRF( UPLO, N, A, LDA, INFO )
  425. *
  426. IF( INFO.NE.0 )
  427. $ RETURN
  428. *
  429. CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  430. CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
  431. *
  432. RETURN
  433. *
  434. * End of DSPOSV
  435. *
  436. END