You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsbtrd.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. *> \brief \b DSBTRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSBTRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbtrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbtrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbtrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO, VECT
  26. * INTEGER INFO, KD, LDAB, LDQ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSBTRD reduces a real symmetric band matrix A to symmetric
  40. *> tridiagonal form T by an orthogonal similarity transformation:
  41. *> Q**T * A * Q = T.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] VECT
  48. *> \verbatim
  49. *> VECT is CHARACTER*1
  50. *> = 'N': do not form Q;
  51. *> = 'V': form Q;
  52. *> = 'U': update a matrix X, by forming X*Q.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] KD
  69. *> \verbatim
  70. *> KD is INTEGER
  71. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  72. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] AB
  76. *> \verbatim
  77. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  78. *> On entry, the upper or lower triangle of the symmetric band
  79. *> matrix A, stored in the first KD+1 rows of the array. The
  80. *> j-th column of A is stored in the j-th column of the array AB
  81. *> as follows:
  82. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  83. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  84. *> On exit, the diagonal elements of AB are overwritten by the
  85. *> diagonal elements of the tridiagonal matrix T; if KD > 0, the
  86. *> elements on the first superdiagonal (if UPLO = 'U') or the
  87. *> first subdiagonal (if UPLO = 'L') are overwritten by the
  88. *> off-diagonal elements of T; the rest of AB is overwritten by
  89. *> values generated during the reduction.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDAB
  93. *> \verbatim
  94. *> LDAB is INTEGER
  95. *> The leading dimension of the array AB. LDAB >= KD+1.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] D
  99. *> \verbatim
  100. *> D is DOUBLE PRECISION array, dimension (N)
  101. *> The diagonal elements of the tridiagonal matrix T.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] E
  105. *> \verbatim
  106. *> E is DOUBLE PRECISION array, dimension (N-1)
  107. *> The off-diagonal elements of the tridiagonal matrix T:
  108. *> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] Q
  112. *> \verbatim
  113. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  114. *> On entry, if VECT = 'U', then Q must contain an N-by-N
  115. *> matrix X; if VECT = 'N' or 'V', then Q need not be set.
  116. *>
  117. *> On exit:
  118. *> if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
  119. *> if VECT = 'U', Q contains the product X*Q;
  120. *> if VECT = 'N', the array Q is not referenced.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDQ
  124. *> \verbatim
  125. *> LDQ is INTEGER
  126. *> The leading dimension of the array Q.
  127. *> LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is DOUBLE PRECISION array, dimension (N)
  133. *> \endverbatim
  134. *>
  135. *> \param[out] INFO
  136. *> \verbatim
  137. *> INFO is INTEGER
  138. *> = 0: successful exit
  139. *> < 0: if INFO = -i, the i-th argument had an illegal value
  140. *> \endverbatim
  141. *
  142. * Authors:
  143. * ========
  144. *
  145. *> \author Univ. of Tennessee
  146. *> \author Univ. of California Berkeley
  147. *> \author Univ. of Colorado Denver
  148. *> \author NAG Ltd.
  149. *
  150. *> \ingroup doubleOTHERcomputational
  151. *
  152. *> \par Further Details:
  153. * =====================
  154. *>
  155. *> \verbatim
  156. *>
  157. *> Modified by Linda Kaufman, Bell Labs.
  158. *> \endverbatim
  159. *>
  160. * =====================================================================
  161. SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
  162. $ WORK, INFO )
  163. *
  164. * -- LAPACK computational routine --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. *
  168. * .. Scalar Arguments ..
  169. CHARACTER UPLO, VECT
  170. INTEGER INFO, KD, LDAB, LDQ, N
  171. * ..
  172. * .. Array Arguments ..
  173. DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
  174. $ WORK( * )
  175. * ..
  176. *
  177. * =====================================================================
  178. *
  179. * .. Parameters ..
  180. DOUBLE PRECISION ZERO, ONE
  181. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  182. * ..
  183. * .. Local Scalars ..
  184. LOGICAL INITQ, UPPER, WANTQ
  185. INTEGER I, I2, IBL, INCA, INCX, IQAEND, IQB, IQEND, J,
  186. $ J1, J1END, J1INC, J2, JEND, JIN, JINC, K, KD1,
  187. $ KDM1, KDN, L, LAST, LEND, NQ, NR, NRT
  188. DOUBLE PRECISION TEMP
  189. * ..
  190. * .. External Subroutines ..
  191. EXTERNAL DLAR2V, DLARGV, DLARTG, DLARTV, DLASET, DROT,
  192. $ XERBLA
  193. * ..
  194. * .. Intrinsic Functions ..
  195. INTRINSIC MAX, MIN
  196. * ..
  197. * .. External Functions ..
  198. LOGICAL LSAME
  199. EXTERNAL LSAME
  200. * ..
  201. * .. Executable Statements ..
  202. *
  203. * Test the input parameters
  204. *
  205. INITQ = LSAME( VECT, 'V' )
  206. WANTQ = INITQ .OR. LSAME( VECT, 'U' )
  207. UPPER = LSAME( UPLO, 'U' )
  208. KD1 = KD + 1
  209. KDM1 = KD - 1
  210. INCX = LDAB - 1
  211. IQEND = 1
  212. *
  213. INFO = 0
  214. IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
  215. INFO = -1
  216. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  217. INFO = -2
  218. ELSE IF( N.LT.0 ) THEN
  219. INFO = -3
  220. ELSE IF( KD.LT.0 ) THEN
  221. INFO = -4
  222. ELSE IF( LDAB.LT.KD1 ) THEN
  223. INFO = -6
  224. ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN
  225. INFO = -10
  226. END IF
  227. IF( INFO.NE.0 ) THEN
  228. CALL XERBLA( 'DSBTRD', -INFO )
  229. RETURN
  230. END IF
  231. *
  232. * Quick return if possible
  233. *
  234. IF( N.EQ.0 )
  235. $ RETURN
  236. *
  237. * Initialize Q to the unit matrix, if needed
  238. *
  239. IF( INITQ )
  240. $ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  241. *
  242. * Wherever possible, plane rotations are generated and applied in
  243. * vector operations of length NR over the index set J1:J2:KD1.
  244. *
  245. * The cosines and sines of the plane rotations are stored in the
  246. * arrays D and WORK.
  247. *
  248. INCA = KD1*LDAB
  249. KDN = MIN( N-1, KD )
  250. IF( UPPER ) THEN
  251. *
  252. IF( KD.GT.1 ) THEN
  253. *
  254. * Reduce to tridiagonal form, working with upper triangle
  255. *
  256. NR = 0
  257. J1 = KDN + 2
  258. J2 = 1
  259. *
  260. DO 90 I = 1, N - 2
  261. *
  262. * Reduce i-th row of matrix to tridiagonal form
  263. *
  264. DO 80 K = KDN + 1, 2, -1
  265. J1 = J1 + KDN
  266. J2 = J2 + KDN
  267. *
  268. IF( NR.GT.0 ) THEN
  269. *
  270. * generate plane rotations to annihilate nonzero
  271. * elements which have been created outside the band
  272. *
  273. CALL DLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ),
  274. $ KD1, D( J1 ), KD1 )
  275. *
  276. * apply rotations from the right
  277. *
  278. *
  279. * Dependent on the the number of diagonals either
  280. * DLARTV or DROT is used
  281. *
  282. IF( NR.GE.2*KD-1 ) THEN
  283. DO 10 L = 1, KD - 1
  284. CALL DLARTV( NR, AB( L+1, J1-1 ), INCA,
  285. $ AB( L, J1 ), INCA, D( J1 ),
  286. $ WORK( J1 ), KD1 )
  287. 10 CONTINUE
  288. *
  289. ELSE
  290. JEND = J1 + ( NR-1 )*KD1
  291. DO 20 JINC = J1, JEND, KD1
  292. CALL DROT( KDM1, AB( 2, JINC-1 ), 1,
  293. $ AB( 1, JINC ), 1, D( JINC ),
  294. $ WORK( JINC ) )
  295. 20 CONTINUE
  296. END IF
  297. END IF
  298. *
  299. *
  300. IF( K.GT.2 ) THEN
  301. IF( K.LE.N-I+1 ) THEN
  302. *
  303. * generate plane rotation to annihilate a(i,i+k-1)
  304. * within the band
  305. *
  306. CALL DLARTG( AB( KD-K+3, I+K-2 ),
  307. $ AB( KD-K+2, I+K-1 ), D( I+K-1 ),
  308. $ WORK( I+K-1 ), TEMP )
  309. AB( KD-K+3, I+K-2 ) = TEMP
  310. *
  311. * apply rotation from the right
  312. *
  313. CALL DROT( K-3, AB( KD-K+4, I+K-2 ), 1,
  314. $ AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ),
  315. $ WORK( I+K-1 ) )
  316. END IF
  317. NR = NR + 1
  318. J1 = J1 - KDN - 1
  319. END IF
  320. *
  321. * apply plane rotations from both sides to diagonal
  322. * blocks
  323. *
  324. IF( NR.GT.0 )
  325. $ CALL DLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ),
  326. $ AB( KD, J1 ), INCA, D( J1 ),
  327. $ WORK( J1 ), KD1 )
  328. *
  329. * apply plane rotations from the left
  330. *
  331. IF( NR.GT.0 ) THEN
  332. IF( 2*KD-1.LT.NR ) THEN
  333. *
  334. * Dependent on the the number of diagonals either
  335. * DLARTV or DROT is used
  336. *
  337. DO 30 L = 1, KD - 1
  338. IF( J2+L.GT.N ) THEN
  339. NRT = NR - 1
  340. ELSE
  341. NRT = NR
  342. END IF
  343. IF( NRT.GT.0 )
  344. $ CALL DLARTV( NRT, AB( KD-L, J1+L ), INCA,
  345. $ AB( KD-L+1, J1+L ), INCA,
  346. $ D( J1 ), WORK( J1 ), KD1 )
  347. 30 CONTINUE
  348. ELSE
  349. J1END = J1 + KD1*( NR-2 )
  350. IF( J1END.GE.J1 ) THEN
  351. DO 40 JIN = J1, J1END, KD1
  352. CALL DROT( KD-1, AB( KD-1, JIN+1 ), INCX,
  353. $ AB( KD, JIN+1 ), INCX,
  354. $ D( JIN ), WORK( JIN ) )
  355. 40 CONTINUE
  356. END IF
  357. LEND = MIN( KDM1, N-J2 )
  358. LAST = J1END + KD1
  359. IF( LEND.GT.0 )
  360. $ CALL DROT( LEND, AB( KD-1, LAST+1 ), INCX,
  361. $ AB( KD, LAST+1 ), INCX, D( LAST ),
  362. $ WORK( LAST ) )
  363. END IF
  364. END IF
  365. *
  366. IF( WANTQ ) THEN
  367. *
  368. * accumulate product of plane rotations in Q
  369. *
  370. IF( INITQ ) THEN
  371. *
  372. * take advantage of the fact that Q was
  373. * initially the Identity matrix
  374. *
  375. IQEND = MAX( IQEND, J2 )
  376. I2 = MAX( 0, K-3 )
  377. IQAEND = 1 + I*KD
  378. IF( K.EQ.2 )
  379. $ IQAEND = IQAEND + KD
  380. IQAEND = MIN( IQAEND, IQEND )
  381. DO 50 J = J1, J2, KD1
  382. IBL = I - I2 / KDM1
  383. I2 = I2 + 1
  384. IQB = MAX( 1, J-IBL )
  385. NQ = 1 + IQAEND - IQB
  386. IQAEND = MIN( IQAEND+KD, IQEND )
  387. CALL DROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
  388. $ 1, D( J ), WORK( J ) )
  389. 50 CONTINUE
  390. ELSE
  391. *
  392. DO 60 J = J1, J2, KD1
  393. CALL DROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  394. $ D( J ), WORK( J ) )
  395. 60 CONTINUE
  396. END IF
  397. *
  398. END IF
  399. *
  400. IF( J2+KDN.GT.N ) THEN
  401. *
  402. * adjust J2 to keep within the bounds of the matrix
  403. *
  404. NR = NR - 1
  405. J2 = J2 - KDN - 1
  406. END IF
  407. *
  408. DO 70 J = J1, J2, KD1
  409. *
  410. * create nonzero element a(j-1,j+kd) outside the band
  411. * and store it in WORK
  412. *
  413. WORK( J+KD ) = WORK( J )*AB( 1, J+KD )
  414. AB( 1, J+KD ) = D( J )*AB( 1, J+KD )
  415. 70 CONTINUE
  416. 80 CONTINUE
  417. 90 CONTINUE
  418. END IF
  419. *
  420. IF( KD.GT.0 ) THEN
  421. *
  422. * copy off-diagonal elements to E
  423. *
  424. DO 100 I = 1, N - 1
  425. E( I ) = AB( KD, I+1 )
  426. 100 CONTINUE
  427. ELSE
  428. *
  429. * set E to zero if original matrix was diagonal
  430. *
  431. DO 110 I = 1, N - 1
  432. E( I ) = ZERO
  433. 110 CONTINUE
  434. END IF
  435. *
  436. * copy diagonal elements to D
  437. *
  438. DO 120 I = 1, N
  439. D( I ) = AB( KD1, I )
  440. 120 CONTINUE
  441. *
  442. ELSE
  443. *
  444. IF( KD.GT.1 ) THEN
  445. *
  446. * Reduce to tridiagonal form, working with lower triangle
  447. *
  448. NR = 0
  449. J1 = KDN + 2
  450. J2 = 1
  451. *
  452. DO 210 I = 1, N - 2
  453. *
  454. * Reduce i-th column of matrix to tridiagonal form
  455. *
  456. DO 200 K = KDN + 1, 2, -1
  457. J1 = J1 + KDN
  458. J2 = J2 + KDN
  459. *
  460. IF( NR.GT.0 ) THEN
  461. *
  462. * generate plane rotations to annihilate nonzero
  463. * elements which have been created outside the band
  464. *
  465. CALL DLARGV( NR, AB( KD1, J1-KD1 ), INCA,
  466. $ WORK( J1 ), KD1, D( J1 ), KD1 )
  467. *
  468. * apply plane rotations from one side
  469. *
  470. *
  471. * Dependent on the the number of diagonals either
  472. * DLARTV or DROT is used
  473. *
  474. IF( NR.GT.2*KD-1 ) THEN
  475. DO 130 L = 1, KD - 1
  476. CALL DLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA,
  477. $ AB( KD1-L+1, J1-KD1+L ), INCA,
  478. $ D( J1 ), WORK( J1 ), KD1 )
  479. 130 CONTINUE
  480. ELSE
  481. JEND = J1 + KD1*( NR-1 )
  482. DO 140 JINC = J1, JEND, KD1
  483. CALL DROT( KDM1, AB( KD, JINC-KD ), INCX,
  484. $ AB( KD1, JINC-KD ), INCX,
  485. $ D( JINC ), WORK( JINC ) )
  486. 140 CONTINUE
  487. END IF
  488. *
  489. END IF
  490. *
  491. IF( K.GT.2 ) THEN
  492. IF( K.LE.N-I+1 ) THEN
  493. *
  494. * generate plane rotation to annihilate a(i+k-1,i)
  495. * within the band
  496. *
  497. CALL DLARTG( AB( K-1, I ), AB( K, I ),
  498. $ D( I+K-1 ), WORK( I+K-1 ), TEMP )
  499. AB( K-1, I ) = TEMP
  500. *
  501. * apply rotation from the left
  502. *
  503. CALL DROT( K-3, AB( K-2, I+1 ), LDAB-1,
  504. $ AB( K-1, I+1 ), LDAB-1, D( I+K-1 ),
  505. $ WORK( I+K-1 ) )
  506. END IF
  507. NR = NR + 1
  508. J1 = J1 - KDN - 1
  509. END IF
  510. *
  511. * apply plane rotations from both sides to diagonal
  512. * blocks
  513. *
  514. IF( NR.GT.0 )
  515. $ CALL DLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ),
  516. $ AB( 2, J1-1 ), INCA, D( J1 ),
  517. $ WORK( J1 ), KD1 )
  518. *
  519. * apply plane rotations from the right
  520. *
  521. *
  522. * Dependent on the the number of diagonals either
  523. * DLARTV or DROT is used
  524. *
  525. IF( NR.GT.0 ) THEN
  526. IF( NR.GT.2*KD-1 ) THEN
  527. DO 150 L = 1, KD - 1
  528. IF( J2+L.GT.N ) THEN
  529. NRT = NR - 1
  530. ELSE
  531. NRT = NR
  532. END IF
  533. IF( NRT.GT.0 )
  534. $ CALL DLARTV( NRT, AB( L+2, J1-1 ), INCA,
  535. $ AB( L+1, J1 ), INCA, D( J1 ),
  536. $ WORK( J1 ), KD1 )
  537. 150 CONTINUE
  538. ELSE
  539. J1END = J1 + KD1*( NR-2 )
  540. IF( J1END.GE.J1 ) THEN
  541. DO 160 J1INC = J1, J1END, KD1
  542. CALL DROT( KDM1, AB( 3, J1INC-1 ), 1,
  543. $ AB( 2, J1INC ), 1, D( J1INC ),
  544. $ WORK( J1INC ) )
  545. 160 CONTINUE
  546. END IF
  547. LEND = MIN( KDM1, N-J2 )
  548. LAST = J1END + KD1
  549. IF( LEND.GT.0 )
  550. $ CALL DROT( LEND, AB( 3, LAST-1 ), 1,
  551. $ AB( 2, LAST ), 1, D( LAST ),
  552. $ WORK( LAST ) )
  553. END IF
  554. END IF
  555. *
  556. *
  557. *
  558. IF( WANTQ ) THEN
  559. *
  560. * accumulate product of plane rotations in Q
  561. *
  562. IF( INITQ ) THEN
  563. *
  564. * take advantage of the fact that Q was
  565. * initially the Identity matrix
  566. *
  567. IQEND = MAX( IQEND, J2 )
  568. I2 = MAX( 0, K-3 )
  569. IQAEND = 1 + I*KD
  570. IF( K.EQ.2 )
  571. $ IQAEND = IQAEND + KD
  572. IQAEND = MIN( IQAEND, IQEND )
  573. DO 170 J = J1, J2, KD1
  574. IBL = I - I2 / KDM1
  575. I2 = I2 + 1
  576. IQB = MAX( 1, J-IBL )
  577. NQ = 1 + IQAEND - IQB
  578. IQAEND = MIN( IQAEND+KD, IQEND )
  579. CALL DROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
  580. $ 1, D( J ), WORK( J ) )
  581. 170 CONTINUE
  582. ELSE
  583. *
  584. DO 180 J = J1, J2, KD1
  585. CALL DROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  586. $ D( J ), WORK( J ) )
  587. 180 CONTINUE
  588. END IF
  589. END IF
  590. *
  591. IF( J2+KDN.GT.N ) THEN
  592. *
  593. * adjust J2 to keep within the bounds of the matrix
  594. *
  595. NR = NR - 1
  596. J2 = J2 - KDN - 1
  597. END IF
  598. *
  599. DO 190 J = J1, J2, KD1
  600. *
  601. * create nonzero element a(j+kd,j-1) outside the
  602. * band and store it in WORK
  603. *
  604. WORK( J+KD ) = WORK( J )*AB( KD1, J )
  605. AB( KD1, J ) = D( J )*AB( KD1, J )
  606. 190 CONTINUE
  607. 200 CONTINUE
  608. 210 CONTINUE
  609. END IF
  610. *
  611. IF( KD.GT.0 ) THEN
  612. *
  613. * copy off-diagonal elements to E
  614. *
  615. DO 220 I = 1, N - 1
  616. E( I ) = AB( 2, I )
  617. 220 CONTINUE
  618. ELSE
  619. *
  620. * set E to zero if original matrix was diagonal
  621. *
  622. DO 230 I = 1, N - 1
  623. E( I ) = ZERO
  624. 230 CONTINUE
  625. END IF
  626. *
  627. * copy diagonal elements to D
  628. *
  629. DO 240 I = 1, N
  630. D( I ) = AB( 1, I )
  631. 240 CONTINUE
  632. END IF
  633. *
  634. RETURN
  635. *
  636. * End of DSBTRD
  637. *
  638. END