You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd3.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. *> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLASD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  22. * LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  27. * $ SQRE
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER CTOT( * ), IDXC( * )
  31. * DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  32. * $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  33. * $ Z( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> DLASD3 finds all the square roots of the roots of the secular
  43. *> equation, as defined by the values in D and Z. It makes the
  44. *> appropriate calls to DLASD4 and then updates the singular
  45. *> vectors by matrix multiplication.
  46. *>
  47. *> This code makes very mild assumptions about floating point
  48. *> arithmetic. It will work on machines with a guard digit in
  49. *> add/subtract, or on those binary machines without guard digits
  50. *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
  51. *> It could conceivably fail on hexadecimal or decimal machines
  52. *> without guard digits, but we know of none.
  53. *>
  54. *> DLASD3 is called from DLASD1.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] NL
  61. *> \verbatim
  62. *> NL is INTEGER
  63. *> The row dimension of the upper block. NL >= 1.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] NR
  67. *> \verbatim
  68. *> NR is INTEGER
  69. *> The row dimension of the lower block. NR >= 1.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] SQRE
  73. *> \verbatim
  74. *> SQRE is INTEGER
  75. *> = 0: the lower block is an NR-by-NR square matrix.
  76. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
  77. *>
  78. *> The bidiagonal matrix has N = NL + NR + 1 rows and
  79. *> M = N + SQRE >= N columns.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] K
  83. *> \verbatim
  84. *> K is INTEGER
  85. *> The size of the secular equation, 1 =< K = < N.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] D
  89. *> \verbatim
  90. *> D is DOUBLE PRECISION array, dimension(K)
  91. *> On exit the square roots of the roots of the secular equation,
  92. *> in ascending order.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] Q
  96. *> \verbatim
  97. *> Q is DOUBLE PRECISION array, dimension (LDQ,K)
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDQ
  101. *> \verbatim
  102. *> LDQ is INTEGER
  103. *> The leading dimension of the array Q. LDQ >= K.
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] DSIGMA
  107. *> \verbatim
  108. *> DSIGMA is DOUBLE PRECISION array, dimension(K)
  109. *> The first K elements of this array contain the old roots
  110. *> of the deflated updating problem. These are the poles
  111. *> of the secular equation.
  112. *> \endverbatim
  113. *>
  114. *> \param[out] U
  115. *> \verbatim
  116. *> U is DOUBLE PRECISION array, dimension (LDU, N)
  117. *> The last N - K columns of this matrix contain the deflated
  118. *> left singular vectors.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDU
  122. *> \verbatim
  123. *> LDU is INTEGER
  124. *> The leading dimension of the array U. LDU >= N.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] U2
  128. *> \verbatim
  129. *> U2 is DOUBLE PRECISION array, dimension (LDU2, N)
  130. *> The first K columns of this matrix contain the non-deflated
  131. *> left singular vectors for the split problem.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LDU2
  135. *> \verbatim
  136. *> LDU2 is INTEGER
  137. *> The leading dimension of the array U2. LDU2 >= N.
  138. *> \endverbatim
  139. *>
  140. *> \param[out] VT
  141. *> \verbatim
  142. *> VT is DOUBLE PRECISION array, dimension (LDVT, M)
  143. *> The last M - K columns of VT**T contain the deflated
  144. *> right singular vectors.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] LDVT
  148. *> \verbatim
  149. *> LDVT is INTEGER
  150. *> The leading dimension of the array VT. LDVT >= N.
  151. *> \endverbatim
  152. *>
  153. *> \param[in,out] VT2
  154. *> \verbatim
  155. *> VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
  156. *> The first K columns of VT2**T contain the non-deflated
  157. *> right singular vectors for the split problem.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LDVT2
  161. *> \verbatim
  162. *> LDVT2 is INTEGER
  163. *> The leading dimension of the array VT2. LDVT2 >= N.
  164. *> \endverbatim
  165. *>
  166. *> \param[in] IDXC
  167. *> \verbatim
  168. *> IDXC is INTEGER array, dimension ( N )
  169. *> The permutation used to arrange the columns of U (and rows of
  170. *> VT) into three groups: the first group contains non-zero
  171. *> entries only at and above (or before) NL +1; the second
  172. *> contains non-zero entries only at and below (or after) NL+2;
  173. *> and the third is dense. The first column of U and the row of
  174. *> VT are treated separately, however.
  175. *>
  176. *> The rows of the singular vectors found by DLASD4
  177. *> must be likewise permuted before the matrix multiplies can
  178. *> take place.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] CTOT
  182. *> \verbatim
  183. *> CTOT is INTEGER array, dimension ( 4 )
  184. *> A count of the total number of the various types of columns
  185. *> in U (or rows in VT), as described in IDXC. The fourth column
  186. *> type is any column which has been deflated.
  187. *> \endverbatim
  188. *>
  189. *> \param[in,out] Z
  190. *> \verbatim
  191. *> Z is DOUBLE PRECISION array, dimension (K)
  192. *> The first K elements of this array contain the components
  193. *> of the deflation-adjusted updating row vector.
  194. *> \endverbatim
  195. *>
  196. *> \param[out] INFO
  197. *> \verbatim
  198. *> INFO is INTEGER
  199. *> = 0: successful exit.
  200. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  201. *> > 0: if INFO = 1, a singular value did not converge
  202. *> \endverbatim
  203. *
  204. * Authors:
  205. * ========
  206. *
  207. *> \author Univ. of Tennessee
  208. *> \author Univ. of California Berkeley
  209. *> \author Univ. of Colorado Denver
  210. *> \author NAG Ltd.
  211. *
  212. *> \ingroup OTHERauxiliary
  213. *
  214. *> \par Contributors:
  215. * ==================
  216. *>
  217. *> Ming Gu and Huan Ren, Computer Science Division, University of
  218. *> California at Berkeley, USA
  219. *>
  220. * =====================================================================
  221. SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  222. $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  223. $ INFO )
  224. *
  225. * -- LAPACK auxiliary routine --
  226. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  227. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  228. *
  229. * .. Scalar Arguments ..
  230. INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  231. $ SQRE
  232. * ..
  233. * .. Array Arguments ..
  234. INTEGER CTOT( * ), IDXC( * )
  235. DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  236. $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  237. $ Z( * )
  238. * ..
  239. *
  240. * =====================================================================
  241. *
  242. * .. Parameters ..
  243. DOUBLE PRECISION ONE, ZERO, NEGONE
  244. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0,
  245. $ NEGONE = -1.0D+0 )
  246. * ..
  247. * .. Local Scalars ..
  248. INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
  249. DOUBLE PRECISION RHO, TEMP
  250. * ..
  251. * .. External Functions ..
  252. DOUBLE PRECISION DLAMC3, DNRM2
  253. EXTERNAL DLAMC3, DNRM2
  254. * ..
  255. * .. External Subroutines ..
  256. EXTERNAL DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
  257. * ..
  258. * .. Intrinsic Functions ..
  259. INTRINSIC ABS, SIGN, SQRT
  260. * ..
  261. * .. Executable Statements ..
  262. *
  263. * Test the input parameters.
  264. *
  265. INFO = 0
  266. *
  267. IF( NL.LT.1 ) THEN
  268. INFO = -1
  269. ELSE IF( NR.LT.1 ) THEN
  270. INFO = -2
  271. ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  272. INFO = -3
  273. END IF
  274. *
  275. N = NL + NR + 1
  276. M = N + SQRE
  277. NLP1 = NL + 1
  278. NLP2 = NL + 2
  279. *
  280. IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
  281. INFO = -4
  282. ELSE IF( LDQ.LT.K ) THEN
  283. INFO = -7
  284. ELSE IF( LDU.LT.N ) THEN
  285. INFO = -10
  286. ELSE IF( LDU2.LT.N ) THEN
  287. INFO = -12
  288. ELSE IF( LDVT.LT.M ) THEN
  289. INFO = -14
  290. ELSE IF( LDVT2.LT.M ) THEN
  291. INFO = -16
  292. END IF
  293. IF( INFO.NE.0 ) THEN
  294. CALL XERBLA( 'DLASD3', -INFO )
  295. RETURN
  296. END IF
  297. *
  298. * Quick return if possible
  299. *
  300. IF( K.EQ.1 ) THEN
  301. D( 1 ) = ABS( Z( 1 ) )
  302. CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
  303. IF( Z( 1 ).GT.ZERO ) THEN
  304. CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
  305. ELSE
  306. DO 10 I = 1, N
  307. U( I, 1 ) = -U2( I, 1 )
  308. 10 CONTINUE
  309. END IF
  310. RETURN
  311. END IF
  312. *
  313. * Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  314. * be computed with high relative accuracy (barring over/underflow).
  315. * This is a problem on machines without a guard digit in
  316. * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  317. * The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  318. * which on any of these machines zeros out the bottommost
  319. * bit of DSIGMA(I) if it is 1; this makes the subsequent
  320. * subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  321. * occurs. On binary machines with a guard digit (almost all
  322. * machines) it does not change DSIGMA(I) at all. On hexadecimal
  323. * and decimal machines with a guard digit, it slightly
  324. * changes the bottommost bits of DSIGMA(I). It does not account
  325. * for hexadecimal or decimal machines without guard digits
  326. * (we know of none). We use a subroutine call to compute
  327. * 2*DSIGMA(I) to prevent optimizing compilers from eliminating
  328. * this code.
  329. *
  330. DO 20 I = 1, K
  331. DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  332. 20 CONTINUE
  333. *
  334. * Keep a copy of Z.
  335. *
  336. CALL DCOPY( K, Z, 1, Q, 1 )
  337. *
  338. * Normalize Z.
  339. *
  340. RHO = DNRM2( K, Z, 1 )
  341. CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  342. RHO = RHO*RHO
  343. *
  344. * Find the new singular values.
  345. *
  346. DO 30 J = 1, K
  347. CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
  348. $ VT( 1, J ), INFO )
  349. *
  350. * If the zero finder fails, report the convergence failure.
  351. *
  352. IF( INFO.NE.0 ) THEN
  353. RETURN
  354. END IF
  355. 30 CONTINUE
  356. *
  357. * Compute updated Z.
  358. *
  359. DO 60 I = 1, K
  360. Z( I ) = U( I, K )*VT( I, K )
  361. DO 40 J = 1, I - 1
  362. Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  363. $ ( DSIGMA( I )-DSIGMA( J ) ) /
  364. $ ( DSIGMA( I )+DSIGMA( J ) ) )
  365. 40 CONTINUE
  366. DO 50 J = I, K - 1
  367. Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  368. $ ( DSIGMA( I )-DSIGMA( J+1 ) ) /
  369. $ ( DSIGMA( I )+DSIGMA( J+1 ) ) )
  370. 50 CONTINUE
  371. Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
  372. 60 CONTINUE
  373. *
  374. * Compute left singular vectors of the modified diagonal matrix,
  375. * and store related information for the right singular vectors.
  376. *
  377. DO 90 I = 1, K
  378. VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
  379. U( 1, I ) = NEGONE
  380. DO 70 J = 2, K
  381. VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
  382. U( J, I ) = DSIGMA( J )*VT( J, I )
  383. 70 CONTINUE
  384. TEMP = DNRM2( K, U( 1, I ), 1 )
  385. Q( 1, I ) = U( 1, I ) / TEMP
  386. DO 80 J = 2, K
  387. JC = IDXC( J )
  388. Q( J, I ) = U( JC, I ) / TEMP
  389. 80 CONTINUE
  390. 90 CONTINUE
  391. *
  392. * Update the left singular vector matrix.
  393. *
  394. IF( K.EQ.2 ) THEN
  395. CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
  396. $ LDU )
  397. GO TO 100
  398. END IF
  399. IF( CTOT( 1 ).GT.0 ) THEN
  400. CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
  401. $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  402. IF( CTOT( 3 ).GT.0 ) THEN
  403. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  404. CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  405. $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
  406. END IF
  407. ELSE IF( CTOT( 3 ).GT.0 ) THEN
  408. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  409. CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  410. $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  411. ELSE
  412. CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
  413. END IF
  414. CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
  415. KTEMP = 2 + CTOT( 1 )
  416. CTEMP = CTOT( 2 ) + CTOT( 3 )
  417. CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
  418. $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
  419. *
  420. * Generate the right singular vectors.
  421. *
  422. 100 CONTINUE
  423. DO 120 I = 1, K
  424. TEMP = DNRM2( K, VT( 1, I ), 1 )
  425. Q( I, 1 ) = VT( 1, I ) / TEMP
  426. DO 110 J = 2, K
  427. JC = IDXC( J )
  428. Q( I, J ) = VT( JC, I ) / TEMP
  429. 110 CONTINUE
  430. 120 CONTINUE
  431. *
  432. * Update the right singular vector matrix.
  433. *
  434. IF( K.EQ.2 ) THEN
  435. CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
  436. $ VT, LDVT )
  437. RETURN
  438. END IF
  439. KTEMP = 1 + CTOT( 1 )
  440. CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
  441. $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
  442. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  443. IF( KTEMP.LE.LDVT2 )
  444. $ CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
  445. $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
  446. $ LDVT )
  447. *
  448. KTEMP = CTOT( 1 ) + 1
  449. NRP1 = NR + SQRE
  450. IF( KTEMP.GT.1 ) THEN
  451. DO 130 I = 1, K
  452. Q( I, KTEMP ) = Q( I, 1 )
  453. 130 CONTINUE
  454. DO 140 I = NLP2, M
  455. VT2( KTEMP, I ) = VT2( 1, I )
  456. 140 CONTINUE
  457. END IF
  458. CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
  459. CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
  460. $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
  461. *
  462. RETURN
  463. *
  464. * End of DLASD3
  465. *
  466. END