You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbmvf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. SUBROUTINE ZHBMVF( UPLO, N, K, ALPHA, A, LDA, X, INCX,
  2. $ BETA, Y, INCY )
  3. * .. Scalar Arguments ..
  4. COMPLEX*16 ALPHA, BETA
  5. INTEGER INCX, INCY, K, LDA, N
  6. CHARACTER*1 UPLO
  7. * .. Array Arguments ..
  8. COMPLEX*16 A( LDA, * ), X( * ), Y( * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * ZHBMV performs the matrix-vector operation
  15. *
  16. * y := alpha*A*x + beta*y,
  17. *
  18. * where alpha and beta are scalars, x and y are n element vectors and
  19. * A is an n by n hermitian band matrix, with k super-diagonals.
  20. *
  21. * Parameters
  22. * ==========
  23. *
  24. * UPLO - CHARACTER*1.
  25. * On entry, UPLO specifies whether the upper or lower
  26. * triangular part of the band matrix A is being supplied as
  27. * follows:
  28. *
  29. * UPLO = 'U' or 'u' The upper triangular part of A is
  30. * being supplied.
  31. *
  32. * UPLO = 'L' or 'l' The lower triangular part of A is
  33. * being supplied.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * N - INTEGER.
  38. * On entry, N specifies the order of the matrix A.
  39. * N must be at least zero.
  40. * Unchanged on exit.
  41. *
  42. * K - INTEGER.
  43. * On entry, K specifies the number of super-diagonals of the
  44. * matrix A. K must satisfy 0 .le. K.
  45. * Unchanged on exit.
  46. *
  47. * ALPHA - COMPLEX*16 .
  48. * On entry, ALPHA specifies the scalar alpha.
  49. * Unchanged on exit.
  50. *
  51. * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
  52. * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  53. * by n part of the array A must contain the upper triangular
  54. * band part of the hermitian matrix, supplied column by
  55. * column, with the leading diagonal of the matrix in row
  56. * ( k + 1 ) of the array, the first super-diagonal starting at
  57. * position 2 in row k, and so on. The top left k by k triangle
  58. * of the array A is not referenced.
  59. * The following program segment will transfer the upper
  60. * triangular part of a hermitian band matrix from conventional
  61. * full matrix storage to band storage:
  62. *
  63. * DO 20, J = 1, N
  64. * M = K + 1 - J
  65. * DO 10, I = MAX( 1, J - K ), J
  66. * A( M + I, J ) = matrix( I, J )
  67. * 10 CONTINUE
  68. * 20 CONTINUE
  69. *
  70. * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  71. * by n part of the array A must contain the lower triangular
  72. * band part of the hermitian matrix, supplied column by
  73. * column, with the leading diagonal of the matrix in row 1 of
  74. * the array, the first sub-diagonal starting at position 1 in
  75. * row 2, and so on. The bottom right k by k triangle of the
  76. * array A is not referenced.
  77. * The following program segment will transfer the lower
  78. * triangular part of a hermitian band matrix from conventional
  79. * full matrix storage to band storage:
  80. *
  81. * DO 20, J = 1, N
  82. * M = 1 - J
  83. * DO 10, I = J, MIN( N, J + K )
  84. * A( M + I, J ) = matrix( I, J )
  85. * 10 CONTINUE
  86. * 20 CONTINUE
  87. *
  88. * Note that the imaginary parts of the diagonal elements need
  89. * not be set and are assumed to be zero.
  90. * Unchanged on exit.
  91. *
  92. * LDA - INTEGER.
  93. * On entry, LDA specifies the first dimension of A as declared
  94. * in the calling (sub) program. LDA must be at least
  95. * ( k + 1 ).
  96. * Unchanged on exit.
  97. *
  98. * X - COMPLEX*16 array of DIMENSION at least
  99. * ( 1 + ( n - 1 )*abs( INCX ) ).
  100. * Before entry, the incremented array X must contain the
  101. * vector x.
  102. * Unchanged on exit.
  103. *
  104. * INCX - INTEGER.
  105. * On entry, INCX specifies the increment for the elements of
  106. * X. INCX must not be zero.
  107. * Unchanged on exit.
  108. *
  109. * BETA - COMPLEX*16 .
  110. * On entry, BETA specifies the scalar beta.
  111. * Unchanged on exit.
  112. *
  113. * Y - COMPLEX*16 array of DIMENSION at least
  114. * ( 1 + ( n - 1 )*abs( INCY ) ).
  115. * Before entry, the incremented array Y must contain the
  116. * vector y. On exit, Y is overwritten by the updated vector y.
  117. *
  118. * INCY - INTEGER.
  119. * On entry, INCY specifies the increment for the elements of
  120. * Y. INCY must not be zero.
  121. * Unchanged on exit.
  122. *
  123. *
  124. * Level 2 Blas routine.
  125. *
  126. * -- Written on 22-October-1986.
  127. * Jack Dongarra, Argonne National Lab.
  128. * Jeremy Du Croz, Nag Central Office.
  129. * Sven Hammarling, Nag Central Office.
  130. * Richard Hanson, Sandia National Labs.
  131. *
  132. *
  133. * .. Parameters ..
  134. COMPLEX*16 ONE
  135. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  136. COMPLEX*16 ZERO
  137. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  138. * .. Local Scalars ..
  139. COMPLEX*16 TEMP1, TEMP2
  140. INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
  141. * .. External Functions ..
  142. LOGICAL LSAME
  143. EXTERNAL LSAME
  144. * .. External Subroutines ..
  145. EXTERNAL XERBLA
  146. * .. Intrinsic Functions ..
  147. INTRINSIC DCONJG, MAX, MIN, DBLE
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Test the input parameters.
  152. *
  153. INFO = 0
  154. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  155. $ .NOT.LSAME( UPLO, 'L' ).AND.
  156. $ .NOT.LSAME( UPLO, 'V' ).AND.
  157. $ .NOT.LSAME( UPLO, 'M' ) )THEN
  158. INFO = 1
  159. ELSE IF( N.LT.0 )THEN
  160. INFO = 2
  161. ELSE IF( K.LT.0 )THEN
  162. INFO = 3
  163. ELSE IF( LDA.LT.( K + 1 ) )THEN
  164. INFO = 6
  165. ELSE IF( INCX.EQ.0 )THEN
  166. INFO = 8
  167. ELSE IF( INCY.EQ.0 )THEN
  168. INFO = 11
  169. END IF
  170. IF( INFO.NE.0 )THEN
  171. CALL XERBLA( 'ZHBMV ', INFO )
  172. RETURN
  173. END IF
  174. *
  175. * Quick return if possible.
  176. *
  177. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  178. $ RETURN
  179. *
  180. * Set up the start points in X and Y.
  181. *
  182. IF( INCX.GT.0 )THEN
  183. KX = 1
  184. ELSE
  185. KX = 1 - ( N - 1 )*INCX
  186. END IF
  187. IF( INCY.GT.0 )THEN
  188. KY = 1
  189. ELSE
  190. KY = 1 - ( N - 1 )*INCY
  191. END IF
  192. *
  193. * Start the operations. In this version the elements of the array A
  194. * are accessed sequentially with one pass through A.
  195. *
  196. * First form y := beta*y.
  197. *
  198. IF( BETA.NE.ONE )THEN
  199. IF( INCY.EQ.1 )THEN
  200. IF( BETA.EQ.ZERO )THEN
  201. DO 10, I = 1, N
  202. Y( I ) = ZERO
  203. 10 CONTINUE
  204. ELSE
  205. DO 20, I = 1, N
  206. Y( I ) = BETA*Y( I )
  207. 20 CONTINUE
  208. END IF
  209. ELSE
  210. IY = KY
  211. IF( BETA.EQ.ZERO )THEN
  212. DO 30, I = 1, N
  213. Y( IY ) = ZERO
  214. IY = IY + INCY
  215. 30 CONTINUE
  216. ELSE
  217. DO 40, I = 1, N
  218. Y( IY ) = BETA*Y( IY )
  219. IY = IY + INCY
  220. 40 CONTINUE
  221. END IF
  222. END IF
  223. END IF
  224. IF( ALPHA.EQ.ZERO )
  225. $ RETURN
  226. *
  227. * Form y when upper triangle of A is stored.
  228. *
  229. IF( LSAME( UPLO, 'U' ) )THEN
  230. KPLUS1 = K + 1
  231. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  232. DO 60, J = 1, N
  233. TEMP1 = ALPHA*X( J )
  234. TEMP2 = ZERO
  235. L = KPLUS1 - J
  236. DO 50, I = MAX( 1, J - K ), J - 1
  237. Y( I ) = Y( I ) + TEMP1*A( L + I, J )
  238. TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I )
  239. 50 CONTINUE
  240. Y( J ) = Y( J ) + TEMP1*DBLE( A( KPLUS1, J ) )
  241. $ + ALPHA*TEMP2
  242. 60 CONTINUE
  243. ELSE
  244. JX = KX
  245. JY = KY
  246. DO 80, J = 1, N
  247. TEMP1 = ALPHA*X( JX )
  248. TEMP2 = ZERO
  249. IX = KX
  250. IY = KY
  251. L = KPLUS1 - J
  252. DO 70, I = MAX( 1, J - K ), J - 1
  253. Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
  254. TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX )
  255. IX = IX + INCX
  256. IY = IY + INCY
  257. 70 CONTINUE
  258. Y( JY ) = Y( JY ) + TEMP1*DBLE( A( KPLUS1, J ) )
  259. $ + ALPHA*TEMP2
  260. JX = JX + INCX
  261. JY = JY + INCY
  262. IF( J.GT.K )THEN
  263. KX = KX + INCX
  264. KY = KY + INCY
  265. END IF
  266. 80 CONTINUE
  267. END IF
  268. RETURN
  269. ENDIF
  270. *
  271. * Form y when lower triangle of A is stored.
  272. *
  273. IF( LSAME( UPLO, 'L' ) )THEN
  274. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  275. DO 100, J = 1, N
  276. TEMP1 = ALPHA*X( J )
  277. TEMP2 = ZERO
  278. Y( J ) = Y( J ) + TEMP1*DBLE( A( 1, J ) )
  279. L = 1 - J
  280. DO 90, I = J + 1, MIN( N, J + K )
  281. Y( I ) = Y( I ) + TEMP1*A( L + I, J )
  282. TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( I )
  283. 90 CONTINUE
  284. Y( J ) = Y( J ) + ALPHA*TEMP2
  285. 100 CONTINUE
  286. ELSE
  287. JX = KX
  288. JY = KY
  289. DO 120, J = 1, N
  290. TEMP1 = ALPHA*X( JX )
  291. TEMP2 = ZERO
  292. Y( JY ) = Y( JY ) + TEMP1*DBLE( A( 1, J ) )
  293. L = 1 - J
  294. IX = JX
  295. IY = JY
  296. DO 110, I = J + 1, MIN( N, J + K )
  297. IX = IX + INCX
  298. IY = IY + INCY
  299. Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
  300. TEMP2 = TEMP2 + DCONJG( A( L + I, J ) )*X( IX )
  301. 110 CONTINUE
  302. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  303. JX = JX + INCX
  304. JY = JY + INCY
  305. 120 CONTINUE
  306. END IF
  307. RETURN
  308. END IF
  309. *
  310. * Form y when upper triangle of A is stored.
  311. *
  312. IF( LSAME( UPLO, 'V' ) )THEN
  313. KPLUS1 = K + 1
  314. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  315. DO 160, J = 1, N
  316. TEMP1 = ALPHA*X( J )
  317. TEMP2 = ZERO
  318. L = KPLUS1 - J
  319. DO 150, I = MAX( 1, J - K ), J - 1
  320. Y( I ) = Y( I ) + TEMP1*DCONJG(A( L + I, J ))
  321. TEMP2 = TEMP2 + A( L + I, J )*X( I )
  322. 150 CONTINUE
  323. Y( J ) = Y( J ) + TEMP1*DBLE( A( KPLUS1, J ) )
  324. $ + ALPHA*TEMP2
  325. 160 CONTINUE
  326. ELSE
  327. JX = KX
  328. JY = KY
  329. DO 180, J = 1, N
  330. TEMP1 = ALPHA*X( JX )
  331. TEMP2 = ZERO
  332. IX = KX
  333. IY = KY
  334. L = KPLUS1 - J
  335. DO 170, I = MAX( 1, J - K ), J - 1
  336. Y( IY ) = Y( IY ) + TEMP1*DCONJG(A( L + I, J ))
  337. TEMP2 = TEMP2 + A( L + I, J )*X( IX )
  338. IX = IX + INCX
  339. IY = IY + INCY
  340. 170 CONTINUE
  341. Y( JY ) = Y( JY ) + TEMP1*DBLE( A( KPLUS1, J ) )
  342. $ + ALPHA*TEMP2
  343. JX = JX + INCX
  344. JY = JY + INCY
  345. IF( J.GT.K )THEN
  346. KX = KX + INCX
  347. KY = KY + INCY
  348. END IF
  349. 180 CONTINUE
  350. END IF
  351. RETURN
  352. ENDIF
  353. *
  354. * Form y when lower triangle of A is stored.
  355. *
  356. IF( LSAME( UPLO, 'M' ) )THEN
  357. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  358. DO 200, J = 1, N
  359. TEMP1 = ALPHA*X( J )
  360. TEMP2 = ZERO
  361. Y( J ) = Y( J ) + TEMP1*DBLE( A( 1, J ) )
  362. L = 1 - J
  363. DO 190, I = J + 1, MIN( N, J + K )
  364. Y( I ) = Y( I ) + TEMP1*DCONJG(A( L + I, J ))
  365. TEMP2 = TEMP2 + A( L + I, J )*X( I )
  366. 190 CONTINUE
  367. Y( J ) = Y( J ) + ALPHA*TEMP2
  368. 200 CONTINUE
  369. ELSE
  370. JX = KX
  371. JY = KY
  372. DO 220, J = 1, N
  373. TEMP1 = ALPHA*X( JX )
  374. TEMP2 = ZERO
  375. Y( JY ) = Y( JY ) + TEMP1*DBLE( A( 1, J ) )
  376. L = 1 - J
  377. IX = JX
  378. IY = JY
  379. DO 210, I = J + 1, MIN( N, J + K )
  380. IX = IX + INCX
  381. IY = IY + INCY
  382. Y( IY ) = Y( IY ) + TEMP1*DCONJG(A( L + I, J ))
  383. TEMP2 = TEMP2 + A( L + I, J )*X( IX )
  384. 210 CONTINUE
  385. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  386. JX = JX + INCX
  387. JY = JY + INCY
  388. 220 CONTINUE
  389. END IF
  390. RETURN
  391. END IF
  392. *
  393. RETURN
  394. *
  395. * End of ZHBMV .
  396. *
  397. END