You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdt03.f 7.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. *> \brief \b DBDT03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
  12. * RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER KD, LDU, LDVT, N
  17. * DOUBLE PRECISION RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
  21. * $ VT( LDVT, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> DBDT03 reconstructs a bidiagonal matrix B from its SVD:
  31. *> S = U' * B * V
  32. *> where U and V are orthogonal matrices and S is diagonal.
  33. *>
  34. *> The test ratio to test the singular value decomposition is
  35. *> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
  36. *> where VT = V' and EPS is the machine precision.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> Specifies whether the matrix B is upper or lower bidiagonal.
  46. *> = 'U': Upper bidiagonal
  47. *> = 'L': Lower bidiagonal
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The order of the matrix B.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] KD
  57. *> \verbatim
  58. *> KD is INTEGER
  59. *> The bandwidth of the bidiagonal matrix B. If KD = 1, the
  60. *> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
  61. *> not referenced. If KD is greater than 1, it is assumed to be
  62. *> 1, and if KD is less than 0, it is assumed to be 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] D
  66. *> \verbatim
  67. *> D is DOUBLE PRECISION array, dimension (N)
  68. *> The n diagonal elements of the bidiagonal matrix B.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] E
  72. *> \verbatim
  73. *> E is DOUBLE PRECISION array, dimension (N-1)
  74. *> The (n-1) superdiagonal elements of the bidiagonal matrix B
  75. *> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
  76. *> UPLO = 'L'.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] U
  80. *> \verbatim
  81. *> U is DOUBLE PRECISION array, dimension (LDU,N)
  82. *> The n by n orthogonal matrix U in the reduction B = U'*A*P.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDU
  86. *> \verbatim
  87. *> LDU is INTEGER
  88. *> The leading dimension of the array U. LDU >= max(1,N)
  89. *> \endverbatim
  90. *>
  91. *> \param[in] S
  92. *> \verbatim
  93. *> S is DOUBLE PRECISION array, dimension (N)
  94. *> The singular values from the SVD of B, sorted in decreasing
  95. *> order.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] VT
  99. *> \verbatim
  100. *> VT is DOUBLE PRECISION array, dimension (LDVT,N)
  101. *> The n by n orthogonal matrix V' in the reduction
  102. *> B = U * S * V'.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDVT
  106. *> \verbatim
  107. *> LDVT is INTEGER
  108. *> The leading dimension of the array VT.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] WORK
  112. *> \verbatim
  113. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  114. *> \endverbatim
  115. *>
  116. *> \param[out] RESID
  117. *> \verbatim
  118. *> RESID is DOUBLE PRECISION
  119. *> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS )
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \date December 2016
  131. *
  132. *> \ingroup double_eig
  133. *
  134. * =====================================================================
  135. SUBROUTINE DBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
  136. $ RESID )
  137. *
  138. * -- LAPACK test routine (version 3.7.0) --
  139. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  140. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  141. * December 2016
  142. *
  143. * .. Scalar Arguments ..
  144. CHARACTER UPLO
  145. INTEGER KD, LDU, LDVT, N
  146. DOUBLE PRECISION RESID
  147. * ..
  148. * .. Array Arguments ..
  149. DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
  150. $ VT( LDVT, * ), WORK( * )
  151. * ..
  152. *
  153. * ======================================================================
  154. *
  155. * .. Parameters ..
  156. DOUBLE PRECISION ZERO, ONE
  157. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  158. * ..
  159. * .. Local Scalars ..
  160. INTEGER I, J
  161. DOUBLE PRECISION BNORM, EPS
  162. * ..
  163. * .. External Functions ..
  164. LOGICAL LSAME
  165. INTEGER IDAMAX
  166. DOUBLE PRECISION DASUM, DLAMCH
  167. EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH
  168. * ..
  169. * .. External Subroutines ..
  170. EXTERNAL DGEMV
  171. * ..
  172. * .. Intrinsic Functions ..
  173. INTRINSIC ABS, DBLE, MAX, MIN
  174. * ..
  175. * .. Executable Statements ..
  176. *
  177. * Quick return if possible
  178. *
  179. RESID = ZERO
  180. IF( N.LE.0 )
  181. $ RETURN
  182. *
  183. * Compute B - U * S * V' one column at a time.
  184. *
  185. BNORM = ZERO
  186. IF( KD.GE.1 ) THEN
  187. *
  188. * B is bidiagonal.
  189. *
  190. IF( LSAME( UPLO, 'U' ) ) THEN
  191. *
  192. * B is upper bidiagonal.
  193. *
  194. DO 20 J = 1, N
  195. DO 10 I = 1, N
  196. WORK( N+I ) = S( I )*VT( I, J )
  197. 10 CONTINUE
  198. CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU,
  199. $ WORK( N+1 ), 1, ZERO, WORK, 1 )
  200. WORK( J ) = WORK( J ) + D( J )
  201. IF( J.GT.1 ) THEN
  202. WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
  203. BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
  204. ELSE
  205. BNORM = MAX( BNORM, ABS( D( J ) ) )
  206. END IF
  207. RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
  208. 20 CONTINUE
  209. ELSE
  210. *
  211. * B is lower bidiagonal.
  212. *
  213. DO 40 J = 1, N
  214. DO 30 I = 1, N
  215. WORK( N+I ) = S( I )*VT( I, J )
  216. 30 CONTINUE
  217. CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU,
  218. $ WORK( N+1 ), 1, ZERO, WORK, 1 )
  219. WORK( J ) = WORK( J ) + D( J )
  220. IF( J.LT.N ) THEN
  221. WORK( J+1 ) = WORK( J+1 ) + E( J )
  222. BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
  223. ELSE
  224. BNORM = MAX( BNORM, ABS( D( J ) ) )
  225. END IF
  226. RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
  227. 40 CONTINUE
  228. END IF
  229. ELSE
  230. *
  231. * B is diagonal.
  232. *
  233. DO 60 J = 1, N
  234. DO 50 I = 1, N
  235. WORK( N+I ) = S( I )*VT( I, J )
  236. 50 CONTINUE
  237. CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU, WORK( N+1 ),
  238. $ 1, ZERO, WORK, 1 )
  239. WORK( J ) = WORK( J ) + D( J )
  240. RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
  241. 60 CONTINUE
  242. J = IDAMAX( N, D, 1 )
  243. BNORM = ABS( D( J ) )
  244. END IF
  245. *
  246. * Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
  247. *
  248. EPS = DLAMCH( 'Precision' )
  249. *
  250. IF( BNORM.LE.ZERO ) THEN
  251. IF( RESID.NE.ZERO )
  252. $ RESID = ONE / EPS
  253. ELSE
  254. IF( BNORM.GE.RESID ) THEN
  255. RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
  256. ELSE
  257. IF( BNORM.LT.ONE ) THEN
  258. RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
  259. $ ( DBLE( N )*EPS )
  260. ELSE
  261. RESID = MIN( RESID / BNORM, DBLE( N ) ) /
  262. $ ( DBLE( N )*EPS )
  263. END IF
  264. END IF
  265. END IF
  266. *
  267. RETURN
  268. *
  269. * End of DBDT03
  270. *
  271. END